Table Of Contents

1. INTRODUCTION ... 5
 1.1 Purpose .. 5
 1.2 Regulatory Information .. 5
 1.3 Abbreviations .. 7

2. PERFORMANCE ... 9
 2.1 H/W Features .. 9
 2.2 Technical Specification ... 11

3. TECHNICAL BRIEF ... 16
 3.1 Digital Main Processor ... 16
 3.2 Power Management ... 21
 3.3 FEM with integrated Power Amplifier Module
 (SKY77547, U303) .. 26
 3.4 Clocks .. 28
 3.5 RF SYS of MT6253 (U102) .. 30
 3.6 MEMORY(PF38F4050M0Y3DE, U101) 32
 3.7 BT Module .. 35
 3.8 SIM Card Interface ... 39
 3.9 Micro-SD Card Interface .. 41
 3.10 LCD Interface ... 44
 3.11 Battery Charger Interface ... 46
 3.12 Keypad Interface .. 47
 3.13 Audio Front-End .. 50
 3.15 KEY BACKLKLIGHT LED Interface 53
 3.16 Vibrator Interface ... 54

4. TROUBLE SHOOTING ... 55
 4.1 RF Component .. 55
 4.2 RX Trouble ... 56
 4.3 TX Trouble ... 60
 4.4 Power On Trouble ... 64
 4.5 Charging Trouble .. 67
 4.6 Vibrator Trouble ... 69
 4.7 LCD Trouble ... 71
 4.9 Speaker Trouble .. 75
 4.10 Earphone Trouble ... 77
 4.11 Receiver Trouble ... 79
 4.12 Microphone Trouble .. 81
 4.13 SIM Card Interface Trouble 83
 4.14 SIM2 Card Interface Trouble 85
 4.15 KEY backlight Trouble .. 87
 4.16 Micro SD (uSD) Trouble ... 89
 4.17 Bluetooth Trouble .. 91
 4.18 FM Radio Trouble ... 93

5. DOWNLOAD .. 95

6. BLOCK DIAGRAM .. 108

7. CIRCUIT DIAGRAM .. 109

8. BGA PIN MAP ... 115

9. PCB LAYOUT ... 117

10. ENGINEERING MODE .. 123

11. RF CALIBRATION .. 125
 11.1 Configuration of Tachyon ... 125
 11.2 How to use Tachyon .. 127

12. EXPLODED VIEW & REPLACEMENT PART LIST 129
 12.1 EXPLODED VIEW .. 129
 12.2 Replacement Parts .. 131
 12.3 Accessory ... 142
1. INTRODUCTION

1.1 Purpose
This manual provides the information necessary to repair, calibration, description and download the features of this model.

1.2 Regulatory Information
A. Security
Toll fraud, the unauthorized use of telecommunications system by an unauthorized part (for example, persons other than your company's employees, agents, subcontractors, or person working on your company's behalf) can result in substantial additional charges for your telecommunications services. System users are responsible for the security of own system. There are may be risks of toll fraud associated with your telecommunications system. System users are responsible for programming and configuring the equipment to prevent unauthorized use. The manufacturer does not warrant that this product is immune from the above case but will prevent unauthorized use of common-carrier telecommunication service of facilities accessed through or connected to it.

The manufacturer will not be responsible for any charges that result from such unauthorized use.

B. Incidence of Harm
If a telephone company determines that the equipment provided to customer is faulty and possibly causing harm or interruption in service to the telephone network, it should disconnect telephone service until repair can be done. A telephone company may temporarily disconnect service as long as repair is not done.

C. Changes in Service
A local telephone company may make changes in its communications facilities or procedure. If these changes could reasonably be expected to affect the use of the this phone or compatibility with the network, the telephone company is required to give advanced written notice to the user, allowing the user to take appropriate steps to maintain telephone service.

D. Maintenance Limitations
Maintenance limitations on this model must be performed only by the manufacturer or its authorized agent. The user may not make any changes and/or repairs expect as specifically noted in this manual. Therefore, note that unauthorized alternations or repair may affect the regulatory status of the system and may void any remaining warranty.
1. INTRODUCTION

E. Notice of Radiated Emissions
This model complies with rules regarding radiation and radio frequency emission as defined by local regulatory agencies. In accordance with these agencies, you may be required to provide information such as the following to the end user.

F. Pictures
The pictures in this manual are for illustrative purposes only; your actual hardware may look slightly different.

G. Interference and Attenuation
Phone may interfere with sensitive laboratory equipment, medical equipment, etc. Interference from unsuppressed engines or electric motors may cause problems.

H. Electrostatic Sensitive Devices

ATTENTION

Boards, which contain Electrostatic Sensitive Device (ESD), are indicated by the sign. Following information is ESD handling:

- Service personnel should ground themselves by using a wrist strap when exchange system boards.
- When repairs are made to a system board, they should spread the floor with anti-static mat which is also grounded.
- Use a suitable, grounded soldering iron.
- Keep sensitive parts in these protective packages until these are used.
- When returning system boards or parts like EEPROM to the factory, use the protective package as described.
1.3 Abbreviations

For the purposes of this manual, following abbreviations apply:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC</td>
<td>Automatic Power Control</td>
</tr>
<tr>
<td>BB</td>
<td>Baseband</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Ratio</td>
</tr>
<tr>
<td>CC-CV</td>
<td>Constant Current – Constant Voltage</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Converter</td>
</tr>
<tr>
<td>DCS</td>
<td>Digital Communication System</td>
</tr>
<tr>
<td>dBm</td>
<td>dB relative to 1 milli watt</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrical Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic Discharge</td>
</tr>
<tr>
<td>FPCB</td>
<td>Flexible Printed Circuit Board</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum Shift Keying</td>
</tr>
<tr>
<td>GPIB</td>
<td>General Purpose Interface Bus</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>IPUI</td>
<td>International Portable User Identity</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>LDO</td>
<td>Low Drop Output</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>OPLL</td>
<td>Offset Phase Locked Loop</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAM</td>
<td>Power Amplifier Module</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PGA</td>
<td>Programmable Gain Amplifier</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase Locked Loop</td>
</tr>
<tr>
<td>PSTN</td>
<td>Public Switched Telephone Network</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RLR</td>
<td>Receiving Loudness Rating</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>SAW</td>
<td>Surface Acoustic Wave</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module</td>
</tr>
<tr>
<td>SLR</td>
<td>Sending Loudness Rating</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>PSRAM</td>
<td>Pseudo SRAM</td>
</tr>
<tr>
<td>STMR</td>
<td>Side Tone Masking Rating</td>
</tr>
<tr>
<td>TA</td>
<td>Travel Adapter</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver/Transmitter</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>VCTCXO</td>
<td>Voltage Control Temperature Compensated Crystal Oscillator</td>
</tr>
<tr>
<td>WAP</td>
<td>Wireless Application Protocol</td>
</tr>
</tbody>
</table>
2. PERFORMANCE

2.1 H/W Features

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Battery</td>
<td>Li-ion Polymer, 3.7V 950mAh</td>
<td></td>
</tr>
<tr>
<td>Stand by TIME</td>
<td>Up to 200 hrs : Paging Period 5, RSSI 85dBm</td>
<td></td>
</tr>
<tr>
<td>Talk time</td>
<td>Up to 200min : GSM Tx Level 7</td>
<td></td>
</tr>
<tr>
<td>Stand by time</td>
<td>Up to 200 hours : Paging Period 5, RSSI -85dBm</td>
<td></td>
</tr>
<tr>
<td>Charging time</td>
<td>Approx. 3 hours</td>
<td></td>
</tr>
<tr>
<td>RX Sensitivity</td>
<td>GSM, EGSM: -109dBm, DCS: -109dBm</td>
<td></td>
</tr>
<tr>
<td>TX output power</td>
<td>GSM, EGSM: 32.3dBm(Level 5), DCS, PCS: 29.5dBm(Level 0)</td>
<td></td>
</tr>
<tr>
<td>GPRS compatibility</td>
<td>Class 10</td>
<td></td>
</tr>
<tr>
<td>SIM card type</td>
<td>3V Small</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>MAIN : TFT 176 × 220 pixel 262K Color</td>
<td></td>
</tr>
<tr>
<td>Status Indicator</td>
<td>Hard icons. Key Pad 0 ~ 9, #, *, Up/Down Navigation Key Menu Key, Clear Key, Back Key, Confirm Key Send Key, Soft Key(Left/Right) Volume Key(Up/Down), PWR Key</td>
<td></td>
</tr>
<tr>
<td>ANT</td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>EAR Phone Jack</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PC Synchronization</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Speech coding</td>
<td>EFR/FR/HR</td>
<td></td>
</tr>
<tr>
<td>Data and Fax</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vibrator</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Loud Speaker</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Voice Recoding</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Microphone</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
2. PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Feature</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker/Receiver</td>
<td>16Φ Speaker/ 12 x 7 Receiver</td>
<td></td>
</tr>
<tr>
<td>Travel Adapter</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MIDI</td>
<td>SW MIDI (Mono SPK)</td>
<td></td>
</tr>
<tr>
<td>Bluetooth / FM Radio</td>
<td>Bluetooth version 2.1 / 76–108MHz supported</td>
<td></td>
</tr>
</tbody>
</table>
2. PERFORMANCE

2.2 Technical Specification

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frequency Band</td>
<td>GSM850
TX: 824 ~ 849 MHz
RX: 869 ~ 894 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCS
TX: 1710 ~ 1785 MHz
RX: 1805 ~ 1880 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCS
TX: 1850 ~ 1910 MHz
RX: 1930 ~ 1990 MHz</td>
</tr>
<tr>
<td>2</td>
<td>Phase Error</td>
<td>RMS < 5 degrees
Peak < 20 degrees</td>
</tr>
<tr>
<td>3</td>
<td>Frequency Error</td>
<td>< 0.1 ppm</td>
</tr>
<tr>
<td>4</td>
<td>Power Level</td>
<td>GSM850/EGSM
Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCS/PCS
Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
2. PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Output RF Spectrum (due to modulation)</td>
<td>GSM850/ EGSM
Offset from Carrier (kHz).
Max. dBc
100
200
250
400
600~ <1,200
1,200~ <1,800
1,800~ <3,000
3,000~ <6,000
6,000</td>
</tr>
<tr>
<td>6</td>
<td>Output RF Spectrum (due to switching transient)</td>
<td>GSM850/ EGSM
Offset from Carrier (kHz).
Max. dBm
400
600
1,200
1,800</td>
</tr>
</tbody>
</table>
2. PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
</table>
| 6 | Output RF Spectrum (due to switching transient) | DCS/PCS
Offset from Carrier (kHz), Max. dBm
- 400: -22
- 600: -24
- 1,200: -24
- 1,800: -27 |
| 7 | Spurious Emissions | Conduction, Emission Status |
| 8 | Bit Error Ratio | GSM850, EGSM
BER (Class II) < 2.439% @-102 dBm
DCS,PCS
BER (Class II) < 2.439% @-100 dBm |
| 9 | RX Level Report Accuracy | ±3 dB |
| 10 | SLR | 8±3 dB |
| 11 | Sending Response | Frequency (Hz)
| | Max.(dB)
| 100 | -12
200 | 0
300 | 0 -12
1,000 | 0 -6
2,000 | 4 -6
3,000 | 4 -6
3,400 | 4 -9
4,000 | 0 - |
| 12 | RLR | 2±3 dB |
2. PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Receiving Response</td>
<td>Frequency (Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
</tr>
</tbody>
</table>

* Mean that Adopt a straight line in between 300 Hz and 1,000 Hz to be Max. level in the range.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>STMR</td>
<td>13±5 dB</td>
</tr>
<tr>
<td>15</td>
<td>Stability Margin</td>
<td>> 6 dB</td>
</tr>
<tr>
<td>16</td>
<td>Distortion</td>
<td>dB to ARL (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Side Tone Distortion</td>
<td>Three stage distortion < 10%</td>
</tr>
<tr>
<td>18</td>
<td>System frequency (13 MHz) tolerance</td>
<td>≤ 2.5 ppm</td>
</tr>
<tr>
<td>19</td>
<td>32.768KHz tolerance</td>
<td>≤ 30 ppm</td>
</tr>
<tr>
<td>20</td>
<td>Ringer Volume</td>
<td>At least 65 dBSpl under below conditions: 1. Ringer set as ringer. 2. Test distance set as 50 cm</td>
</tr>
</tbody>
</table>
2. PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
</table>
| 21 | Charge Current | Fast Charge: Typ. 430 mA
Slow Charge: Typ. 80mA
Total Charging Time: < 3 hours |
| 22 | Antenna Display | **Bar Number** | **Power** |
| | | 7 | Over -93 |
| | | 7 -> 5 | -93 ± 2 |
| | | 5 -> 4 | -98 ± 2 |
| | | 4 -> 2 | -101 ± 2 |
| | | 2 -> 1 | -104 ± 2 |
| | | 1 -> 0 | -106 ± 2 |
| | | 0 -> OFF | Under -106 |
| 23 | Battery Indicator | **Battery Bar Number** | **Voltage** |
| | | 3 | ≥ 3.73 ± 0.05 V |
| | | 3 -> 2 | 3.72 ± 0.05 V |
| | | 2 -> 1 | 3.62 ± 0.05 V |
| | | 1 -> 0 | 3.45 ± 0.05 V |
| 24 | Low Voltage Warning (Blinking Bar) | ≤ 3.45 ± 0.05 V (Call), Once per 1 minute.(Receiver)
≤ 3.4 ± 0.05 V (Standby), Once per 3 minute.(Speaker) |
| 25 | Forced shut down Voltage | 3.35 ± 0.05V |
| 26 | Sustain RTC without battery | Over 50 hours |
| 27 | Battery Type | Li-Ion Battery
Standard Voltage = 3.7 V
Battery full charge voltage = 4.2 V
Capacity: 800mAh |
| 28 | Travel Charger | Switching-mode charger
Input: 100 ~ 350V, 50/60 Hz
Output: 5.1 V, 400 mA |
3. TECHNICAL BRIEF

3.1 Digital Main Processor

![MT6253 Hardware Block Diagram](image)

Figure. 3.1.1 MT6253 Hardware Block Diagram
3.1.1 General
• Integrated voice-band, audio-band and base-band analog front ends.
• Package:
 – aQFN, 11.5x11.5x0.85 mm
 – 0.47 mm pitch
 – 260balls, 0.47mm pitch package

3.1.2 MCU Subsystem
• ARM7EJ-S 32-bit RISC processor
• High performance multi-layer AMBA bus
• Operating frequency 52/104MHz
• Dedicated DMA bus, 7DMA channels
• 144KB on-chip SRAM
• On-chip boot ROM for Factory Flash Programming
• Watchdog timer for system crash recovery
• 3 sets of General Purpose Timer
• Circuit Switch Data coprocessor
• Division coprocessor

3.1.3 External Memory Interface
• Supports up to 3 external devices
• Supports 16-bit memory components with maximum size of up to 64M Bytes for each bank
• Supports Flash and SRAM/PSRAM with Burst Mode
• Support legacy industry standard parallel LCD Interface
• Support multi-media companion chips with 8/16 bits data width
• Configurable driving strength for memory interface

3.1.4 User Interface
• 6-row x 7-column keypad control with hardware scanner
• Support multi key press for gaming
• SIM/USIM Controller with hardware T=0/T=1 protocol control
• Real Time Clock(RTC) operating with a separate power supply
• General Purpose I/Os (GPIOs)
• 1 set of Pulse Width Modulation(PWM) Output
• Alerter Output with Enhanced PWM or PDM
• Maximum 7 external interrupt lines

3.1.5 Security
• Support security key and 128bit chip unique ID
3. TECHNICAL BRIEF

3.1.6 Connectivity

• 3 sets of UART with hardware flow control and speed up to 921600 bps
• IrDA modulator/demodulator with hardware framer supports SIR mode of operation
• HS/FS/LS USB 2.0 Device controller
• Multi Media Card/Secure Digital Memory Card/Memory Stick/Memory Stick Prto/SDIO host controller
• Supports SDIO interface for SDIO peripherals as well as WIFI connectivity
• DAI/PCM and I2S interface for Audio application

3.1.7 Low Power Schemes

• Power Down Mode for analog and digital circuits
• Processor Sleep Mode
• Pause Mode of 32KHz clocking at Standby State
• 3-channel Auxiliary 10-bit A/D Converter for application usage other than battery monitoring

3.1.8 Power and Supply Management

• 2.8V to 4.7V Input Range
• Charger Input up to 8V
• 11 sets of LDO Optimized Specific GSM Sub-systems
• One LDO for RF transceiver
• High Operation Efficiency and Low Stand-by Current
• Dual SIM Card Interface
• One boost regulator and Four Open-Drain Output Current Regulators to Supply/Control the LED
• LDO type Vibrator
• One NMOS switch to control R(GB) LED
• Thermal Overload Protection
• Under Voltage Lock-out Protection
• Over Voltage Protection

3.1.9 Integrated RF Receiver

• Direct conversion architecture
• Quad band differential input LNAs
• Quadrature RF mixers
• Fully integrated channel filter with $f_{3dB}=150kHs$
• 95dB gain with 60dB gain control range
• No IIP2 calibration
3. TECHNICAL BRIEF

3.1.10 Integrated RF Transmitter
- Offset phase lock loop
- IQ modulator DC offset calibration by BB ADC/DAC
- Precise quadrature by IF divide-by-4
- Integrated loop filter

3.1.11 Integrated RF Frequency Synthesizer
- Programmable fractional-N synthesizer
- Integrated wide range RFVCO
- Integrated loop filter
- Fast setting time suitable for multi-slot SPRS applications

3.1.12 Integrated RF Digitally-Controlled Crystal Oscillator (DCXO)
- One-pin 26MHz crystal oscillator
- On-chip programmable capacitor array for cross tune

3.1.13 Radio Interface and Baseband Front End
- GMSK modulator with analog I and Q channel outputs
- 10-bit D/A Converter for uplink baseband I and Q signals
- 14-bit high resolution A/D Converter for downlink baseband I and Q signals
- Calibration mechanism of offset and gain mismatch for baseband A/D Converter and D/A Converter
- 10-bit D/A Converter for Automatic Power Control
- Programmable Radio RX filter with adaptive bandwidth control
- Dedicated Rx filter for FB acquisition
- 6-Pin Baseband Parallel Interface (BRI) with programmable driving strength
- Multi-band support

3.1.14 Voice and Modem CODEC
- Digital tone generation
- Voice Memo
- Noise Reduction
- Echo Suppression
- Advanced Sidetone Oscillation Reduction
- Digital sidetone generator with programmable gain
- Two programmable acoustic compensation filters
- GSM/GPRS quad vocoders for adaptive multirate (AMR), enhanced full rate (EFR), full rate (FR), and half rate (HR)
- GSM channel coding, equalization and A5/1, A5/2 and A5/3 ciphering
- GPRS GEA1, GEA2 and GEA3 ciphering
3. TECHNICAL BRIEF

3.1.15 Voice Interface and Voice Front End
- Two microphone inputs sharing one low noise amplifier with programmable gain and automatic gain control (AGC) mechanism
- Voice power amplifier with programmable gain
- 2nd order Sigma-delta A/D Converter for voice uplink path
- D/A Converter for voice downlink path
- Supporter for voice downlink path
- Supports half-duplex hands-free operation
- Compliant with GSM 03.05

3.1.16 LCD Interface
- Dedicated Parallel Interface supports 2 external 8/9 bit Parallel Interface, and Serial interface for LCM

3.1.17 LCD Controller
- Supports LCM format: RGB332, RGB444, RGB565, RGB666, RGB888
- Supports LCD module with maximum resolution up to 240x320 at 16bpp
- Capable of combining display memories with up to 4 blending layers
- Accelerated Gamma correction with programmable gamma table.
- Supports hardware display rotation for each layer

3.1.18 Audio CODEC
- Wavetable synthesis with up to 64 tones
- Advanced wavetable synthesizer capable of generating and 47 sets of percussions
- PCM Playback and Record
- Digital Audio Playback

3.1.19 Audio Interface and Audio Front End
- Supports I2S interface
- High resolution D/A Converters for Stereo Audio playback
- Stereo analog input for stereo audio source
- Analog multiplexer for Stereo Audio
- FM Radio Recording
- Stereo to Mono Conversion
- HE-AAC decode support
3.2 Power Management

Power management unit, so called PMU, is integrated into analog part. To facilitate software control and interface design, PMU control share the CCI interface along with other analog parts, such as BBTX, BBRX, VBI and ABI during FT.

3.2.1 Low Dropout Regulators (LDOs), Buck converter and Reference

The PMU Integrates 12 LDOs that are optimized for their given functions by balancing quiescent current, dropout voltage, line/load regulation, and output noise.

- **RF LDO (Vrf)**
 The RF LDO is a linear regulator that could source 180mA (max) with 2.8V output voltage. It supplies the RF circuitry of the handset. The LDO is optimized for high performance and adequate quiescent current.
3. TECHNICAL BRIEF

- **Digital Core Buck Converter (Vcore)**
 The digital core regulator is a DC-DC step-down (Buck converter) that could source 200mA (max) with 1.2V to 0.9V programmable output voltage based on software register setting. It supplies the power for baseband circuitry of the SoC. The buck converter is optimized for high efficiency and low quiescent current.

- **Digital IO LDO (Vio)**
 The digital IO LDO is a linear regulator that could source 100mA (max) with 2.8V output voltage. It supplies the power for baseband circuitry of the SoC. The LDO is optimized for very low quiescent current and turns on automatically together with Vm/Va LDOs.

- **Analog LDO (Va)**
 The analog LDO is a linear regulator that could source 100mA (max) with 2.8V output voltage. It supplies the analog sections of the SoC. The LDO is optimized for low frequency ripple rejection in order to reject the ripple coming from the burst at 217Hz of RF power amplifier.

- **TCXO LDO (Vtcxo)**
 The TCXO LDO is a linear regulator that could source 20mA (max) with 2.8V output voltage. It supplies the temperature compensated crystal oscillator, which needs ultra low noise supply with very good ripple rejection.

- **Single-Step RTC LDO (Vrtc)**
 The single-step RTC LDO is a linear regulator that can charge up a capacitor-type backup coin cell to 2.8V, which also supplies the RTC module even at the absence of the main battery. The single-step LDO features the reverse current protection and is optimized for ultra low quiescent current while sustaining the RTC function as long as possible.

- **Memory LDO (Vm)**
 The memory LDO is a linear regulator that could source 200mA (max) with 1.8V or 2.8V output voltage selection based on the supply specification of memory chips. It supplies the memory circuitry in the handset. The LDO is optimized for very low quiescent current with wide output loading range.

- **SIM LDO (Vsim)**
 The SIM LDO is a linear regulator that could source 80mA (max) with 1.8V or 3.0V output voltage selection based on the supply specs of subscriber identity modules (SIM) card. It supplies the SIM card and SIM level shifter circuitry in the handset. The Vsim LDO is controlled independently by the register named VSIM_EN.
3. TECHNICAL BRIEF

- **SIM2 LDO (Vsim2)**

 The SIM2 LDO is a linear regulator that could source 20mA (max) with 1.8V or 3.0V output voltage selection based on the supply specs of the 2nd subscriber identity modules (SIM) card. It supplies the 2nd SIM card and SIM level shifter circuitry in the handset. The Vsim2 LDO is controlled independently by the register named VSIM2_EN.

- **USB LDO (Vusb)**

 The USB LDO is a linear regulator that could source 75mA (max) with 3.3V output dedicated for USB circuitry. It is controlled independently by the register named RG_VUSB_EN.

- **Memory Card / Bluetooth LDO (Vbt)**

 The VBT LDO is a linear regulator that could source 150mA (max) with 1.5V, 1.8V, 2.5V or 2.8V output for memory card or Bluetooth module. It is controlled independently by the register named RG_VBT_EN.

- **Camera Analog LDO (Vcama)**

 The Vcama LDO is a linear regulator that could source 150mA (max) with 1.5V, 1.8V, 2.5V or 2.8V output which is selected by the register named VCAMA_SEL[1:0]. It supplies the analog power of the camera module. Vcama is controlled independently by the register named RG_VCAMA_EN.

- **Camera Digital LDO (Vcamd)**

 The Vcamd LDO is a linear regulator that could source 75mA (max) with 1.3V, 1.5V, 1.8V or 2.8V output which is selected by the register named VCAMD_SEL[1:0]. It supplies the digital power of the camera module. Vcamd is controlled independently by the register named RG_VCAMD_EN.
3. TECHNICAL BRIEF

<table>
<thead>
<tr>
<th>Item</th>
<th>LDO</th>
<th>Voltage</th>
<th>Current</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCORE</td>
<td>1.2V / 0.9V</td>
<td>200 mA</td>
<td>Digital core</td>
</tr>
<tr>
<td>2</td>
<td>VIO</td>
<td>2.8V</td>
<td>100 mA</td>
<td>Digital IO</td>
</tr>
<tr>
<td>3</td>
<td>VRF</td>
<td>2.8V</td>
<td>180 mA</td>
<td>RF chip</td>
</tr>
<tr>
<td>4</td>
<td>VA</td>
<td>2.8V</td>
<td>100 mA</td>
<td>Analog baseband</td>
</tr>
<tr>
<td>5</td>
<td>VRIC</td>
<td>2.8V</td>
<td>1 mA</td>
<td>Real-time clock</td>
</tr>
<tr>
<td>6</td>
<td>VM</td>
<td>1.8V / 2.8V</td>
<td>200 mA</td>
<td>External memory, selectable</td>
</tr>
<tr>
<td>7</td>
<td>VSIM</td>
<td>1.8V / 3.0V</td>
<td>80 mA</td>
<td>SIM card, selectable</td>
</tr>
<tr>
<td>8</td>
<td>VTCXO</td>
<td>2.8V</td>
<td>20 mA</td>
<td>13/26 MHz reference clock</td>
</tr>
<tr>
<td>9</td>
<td>VSIM2</td>
<td>1.8V / 3.0V</td>
<td>20 mA</td>
<td>SIM2 card, selectable</td>
</tr>
<tr>
<td>10</td>
<td>VUSB</td>
<td>3.3V</td>
<td>75 mA</td>
<td>USB</td>
</tr>
<tr>
<td>11</td>
<td>VBT</td>
<td>1.3V / 1.8V / 2.5V / 3V</td>
<td>150 mA</td>
<td>Memory card or Bluetooth</td>
</tr>
<tr>
<td>12</td>
<td>VCAM_A</td>
<td>1.5V / 1.8V / 2.5V / 2.8V</td>
<td>150 mA</td>
<td>Analog camera power</td>
</tr>
<tr>
<td>13</td>
<td>VCAM_D</td>
<td>1.3V / 1.5V / 1.8V / 2.8V</td>
<td>75 mA</td>
<td>Digital camera power</td>
</tr>
</tbody>
</table>

Table 3.2.1. Power Supply Domains (Without RF)
3.2.2 Power On

Together with Power Management IC (PMIC), MT6253 offers both fine and coarse resolutions of power control through software programming. With this efficient method, the developer can turn on selective resources accordingly in order to achieve optimized power consumption. The operating modes of MT6253 as well as main power states provided by the PMIC are shown in Figure 3.2.1.

![Figure 3.2.1. Major Phone Power States and Operating Modes for MT6253 based terminal](image)

Figure 3.2.2. Major Phone Power States and Operating Modes for MT6253 based terminal
3. TECHNICAL BRIEF

3.3 FEM with integrated Power Amplifier Module (SKY77547, U303)

3.3.1 Internal Block Diagram

![SKY77547 Functional Block Diagram](image)

Figure. 3.3.1 SKY77547 FUNCTIONAL BLOCK DIAGRAM

3.3.2 General Description

The SKY77547 is a transmit and receive front-end module (FEM) with Integrated Power Amplifier Control (iPAC™) for quad-band cellular handsets comprising GSM850/900 and DCS1800/PCS1900 operation. Designed in a low profile, compact form factor, the SKY77547 offers a complete Transmit VCO-to-Antenna and Antenna-to-Receive SAW filter solution. The FEM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation.

The module consists of a GSM850/900 PA block and a DCS1800/PCS1900 PA block, impedance matching circuitry for 50 Ω input and output impedances, Tx harmonics filtering, high linearity and a low insertion loss PHEMT RF switch, and a Power Amplifier Control (PAC) block with internal current sense resistor. A custom BiCMOS integrated circuit provides the internal PAC function and decoder circuitry to control the RF switches. The two Hetero junction Bipolar Transistor (HBT) PA blocks are fabricated onto a single Gallium Arsenide (GaAs) die. One PA block supports the GSM850/900 bands and the other PA block supports the DCS1800/PCS1900 bands.
Both PA blocks share common power supply pads to distribute current. The output of each PA block and the outputs to the four receive pads are connected to the antenna pad through a PHEMT RF switch. The GaAs die, PHEMT die, Silicon (Si) die and passive components are mounted on a multi-layer laminate substrate. The assembly is encapsulated with plastic overmold.

<table>
<thead>
<tr>
<th>Mode</th>
<th>VRF</th>
<th>PA_EN</th>
<th>BAND_SW1</th>
<th>BAND_SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EGSM Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSM850 Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GSM_OUT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>DCS_PCS_OUT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1. — = DON'T CARE

Table 3.3.1 Band SW Logic Table

Figure 3.3.2 TX-module CIRCUIT DIAGRAM
3. TECHNICAL BRIEF

3.4 Clocks

There are two major time bases in the MT6253. For the faster one is the 26 MHz clock originated from the digital control oscillator (DCXO) of RF block. This is then converted to the square-wave signal through CLKSQ. The other time base is the 32768 Hz clock generated by an on-chip oscillator connected to an external crystal.

Figure 3.4.1 Clock distributions inside the MT6253.

Figure 3.4.2 Crystal Oscillator External Connection
3.4.1 32.768KHz Time Base

The 32768 Hz clock is always running. It’s mainly used as the time base of the Real Time Clock (RTC) module, which maintains time and date with counters. Therefore, both the 32768Hz oscillator and the RTC module is powered by separate voltage supplies that shall not be powered down when the other supplies do.

In low power mode, the 13Mhz time base is turned off, so the 32768Hz clock shall be employed to update the critical TDMA timer and Watchdog Timer. This time base is also used to clocks the keypad scanner logic.

3.4.2 26MHz Time Base

Since PLL are based on 13MHz reference clock. There is an ½-dividers for PLL existing to allow using 26MHz DCXO.

There are 2 phase-locked loops (PLL) in MT6253. The UPLL generates 624Mhz clock output, then a frequency divider further divide 6, and 13 to generate fixed 103Mhz, and 48Mhz for GSM_CLOCK and USB_CLOCK and DSP_CLOCK. These four primary clocks then feed into GSM, USB, MCU and DSP Clock Domain, respectively.

These 2 PLLs require no off-chip components for operations and can be turn off in order to save power. After power-on, the PLLs are off by default and the source clock signal is selected through multiplexers. The software shall take cares of the PLL lock time while changing the clock selections. The PLL and usages are listed below.

- PLL supply four clock source : MCU_CLOCK(104~113Mhz), DSP_CLOCK(104~113Mhz), GSM_CLOCK(104Mhz) and USB_CLOCK(48Mhz)

- For DSP/MCU system clock, MCU_CLOCK and DSP_CLOCK. The outputted 104~113Mhz clock is controlled by MCU for 500Khz per step and settled time is under 100uS. The clock is also connected to DSP/MCU DCM (dynamic clock manager) for dynamically adjusting clock rate by digital clock divider. MCU_CLOCK paces the operations of the MCU cores, MCU memory system, and MCU peripherals as well.

- Modem system clock, GSM_CLOCK, which paces the operations of the GSM/GPRS hardware, coprocessors as well. The outputted 104Mhz clock is connecter to GSM_DCM for dynamically adjusting clock rate by digital clock divider. Typically the GSM_DCM output clock no more than 52Mhz.

Note that PLL need some time to become stable after being powered up. The software shall take cares of the PLL lock time before switching them to the proper frequency. Usually, a software loop longer than the PLL lock time is employed to deal with the problem.

For power management, the MCU software program may stop MCU Clock by setting the Sleep Control Register. Any interrupt requests to MCU can pause the sleep mode, and thus MCU return to the running mode.

AHB also can be stop by setting the Sleep Control Register. However the behavior of AHB in sleep mode is a little different from that of MCU. After entering Sleep Mode, it can be temporarily wake up by any “hreq” (bus request), and then goes back to sloop automatically after all “hreqs” de-assert. Any transactions can take place as usual in sleep mode, and it can save power while there is no transaction on it. However the penalty is losing a little system efficiency for switching on and off bus clock, but the impact is small.
3.5 RFSYS of MT6253 (U102)

Figure. 3.5.1 Block DIAGRAM of RFSYS
3.5.1 GENERAL DESCRIPTION

RFSYS built in MT6253 SOC is a highly integrated RF transceiver for multi-band GMS and GPRS cellular systems. The features are listed as following.

- **Receiver**
 - Direct conversion architecture
 - Quad band differential input LNAs
 - Quadrature RF mixers
 - Fully integrated channel filter with \(f_{3db}=150\text{kHz} \)
 - 95 dB gain with 60 dB gain control range

- **Transmitter**
 - Offset phase lock loop
 - IQ modulator
 - Integrated TX VCO
 - Integrated loop filter

- **Frequency Synthesizer**
 - Programmable fractional-N synthesizer
 - Integrated wide range RFVCO
 - Integrated loop filter
 - Fast settling time suitable for multi-slot GPRS/EDGE applications

- **Digitally-Controlled Crystal Oscillator (DCXO)**
 - One-pin 26 MHz crystal oscillator
 - On-chip programmable capacitor array for coarse tune
 - On-chip programmable capacitor array for fine tune

- **RFSYS in a-QFN package**
3.6 MEMORY(PF38F4050M0Y3DE, U101)

3.6.1 Functional Description

The Numonyx™ StrataFlash® Cellular Memory (M18) device provides high read and write performance at low voltage on a 16-bit data bus. The flash memory device has a multi-partition architecture with read-while-program and read-while-erase capability.

The device supports synchronous burst reads up to 108 MHz using ADV# and CLK address-latching (legacy-latching) on some litho/density combinations and up to 133 MHz using CLK address-latching only on some litho/density combinations. It is listed below in the following table.
In continuous-burst mode, a data Read can traverse partition boundaries. Upon initial power-up or return from reset, the device defaults to asynchronous array read mode. Synchronous burst-mode reads are enabled by programming the Read Configuration Register. In synchronous burst mode, output data is synchronized with a user-supplied clock signal. A WAIT signal provides easy CPU-to-flash memory synchronization.

Designed for low-voltage applications, the device supports read operations with VCC at 1.8 V, and erase and program operations with VPP at 1.8 V or 9.0 V. VCC and VPP can be tied together for a simple, ultra-low power design. In addition to voltage flexibility, a dedicated VPP connection provides complete data protection when VPP is less than VPPLK.

A Status Register provides status and error conditions of erase and program operations. One-Time-Programmable (OTP) registers allow unique flash device identification that can be used to increase flash content security. Also, the individual block-lock feature provides zero-latency block locking and unlocking to protect against unwanted program or erase of the array.

The flash memory device offers three power savings features:

- **Automatic Power Savings (APS) mode**: The device automatically enters APS following a read-cycle completion.
- **Standby mode**: Standby is initiated when the system deselects the device by deasserting CE#.
- **Deep Power-Down (DPD) mode**: DPD provides the lowest power consumption and is enabled by programming in the Enhanced Configuration Register. DPD is initiated by asserting the DPD pin.

<table>
<thead>
<tr>
<th>Litho (nm)</th>
<th>Density (Mbit)</th>
<th>Supports frequency up to (MHz)</th>
<th>Sync read address-latching</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>256</td>
<td>133</td>
<td>CLK-latching</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>108</td>
<td>ADV# - and CLK-latching</td>
</tr>
<tr>
<td>65</td>
<td>128</td>
<td>133</td>
<td>CLK-latching</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>133</td>
<td>CLK-latching</td>
</tr>
<tr>
<td></td>
<td>512</td>
<td>133</td>
<td>CLK-latching</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>108</td>
<td>ADV# - and CLK-latching</td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td>133</td>
<td>CLK-latching</td>
</tr>
</tbody>
</table>

Table 3.6.1 M18 Frequency combinations
3. TECHNICAL BRIEF

3.6.2 Features

- **Device Architecture**
 - Flash Die Density: 256MB
 - PSRAM Die Density: 64MB
 - x16 Non-Mux or AD-Mux I/O Interface Options

- **Device Voltage**
 - Core: VCC = 1.8 V
 - I/O: VCCQ = 1.8 V

- **Device Packaging**
 - Ballout: x16C with 107 Active Balls, QUAD+ with 88 Active Balls, or 56-ball NOR/PSRAM AD-Mux
 - Area: 8x8 mm to 11x13 mm
 - Height: 1.0 mm to 1.4 mm

- **PSRAM Performance**
 - 70 ns Initial Read Access; 20 ns Asynchronous Page-Mode Read
 - Up to 104 MHz with 7 ns Clock-to-Output Synchronous Burst-Mode Reads
 - Configurable 4-, 8-, 16- and Continuous-Word Burst-Length Reads and Writes
 - Partial-Array and Temperature Compensated Self Refresh
 - Programmable Output Impedance

- **Quality and Reliability**
 - Extended Temperature –25 °C to +85 °C
 - Minimum 100K Flash Block Erase Cycles
 - ETOX™ IX (Flash) and ETOX™ X (Flash)
 - Technology on 128 Mbit, 256 Mbit, and 512Mbit M18 die; ETOX™ X (Flash) on 1 Gbit M18 die

- **Flash Performance**
 - 96 ns Initial Read Access; 15 ns Asynchronous Page-Mode Read
 - Up to 133 MHz with 5.5 ns Clock-to-Data Output Synchronous Burst-Mode Read
 - Buffered Enhanced Factory and 1.8 V Low-Power Buffer Programming Modes: 2 μs/Byte (Typ)
 - Deep Power-Down Mode: 2 μA (Typ)
 - Configurable Output Driver

- **Flash Architecture**
 - Multi-Level Cell Technology
 - Hardware Read-While-Program/Erase
 - Symmetrically Blocked Array
 - Eight Partitions
 - Configurable 8-, 16-, or Continuous-Words Burst Length Reads
 - 2-Kbit One-Time Programmable User Protection Register Bits
 - Zero-Latency Block Locking
 - Automated Blank Check Mode

- **Flash Software**
 - Numonyx™ FDI and Numonyx™ PSM
 - Common Flash Interface
 - Basic and Extended Flash Command Set
3.7 BT Module

The internal connection of the major physical blocks and their associated external interfaces are shown in Figure 3.7.1. The transceiver section of MT6612 incorporates the complete receive and transmit paths, including PLL, VCO, LNA, PA, modulator, demodulator. The baseband signal processor incorporates hardware engines performing frequency hopping, error correcting, whitening, encrypting, data packet assembling and de-assembly to offload the embedded ARM7.

3.7.1 General Description

Bluetooth is a low-cost wireless technology used to provide “ad hoc” networking between versatile portable devices such as cell phones, headsets, personal navigation device, and more. MT6612 is a highly integrated Bluetooth platform IC. It includes powerful baseband processing capabilities with rich features and a high performance transceiver, all in a compact single package.
3. TECHNICAL BRIEF

3.7.2 Feature

- **Radio features**
 - Fully compliant with Bluetooth specification 2.1 + EDR.
 - Low out-of-band spurious emissions supports simultaneous operation with GPS, GSM/GPRS worldwide radio systems.
 - Low-IF architecture with high degree of linearity and high order channel filter.
 - Integrated T/R switch.

- **Transmitter features**
 - Meets class1, class 2 and class 3 transmitting requirement.
 - Fully integrated PA provides 9dBm output power. (antenna out)

- **Receiver features**
 - -91dBm sensitivity with excellent interference rejection performance.
 - Hardware AGC dynamically adjusts receiver performance in changing environments.

- **Baseband features**
 - Up to 7 simultaneous active ACL links.
 - Up to 3 simultaneous SCO and eSCO links with CVSD coding.
 - eSCO support.
 - Scatternet support: Up to 4 piconets simultaneously with background inquiry/page scan.
 - Sniff mode, hold mode, and park mode support.
 - AFH and PTA collaborative support for WLAN/BT coexistence.
 - Idle mode and sleep mode enables ultra low power consumption
 - PCM interface and built-in transcoders for A-law, μ-law and linear voice with re-transmission support.
 - Built-in hardware modem engine for access code correlation, header error correction, forward error correction, CRC, whitening, and encryption.
 - Channel quality driven data rate adaptation.
 - Channel assessment for AFH.

- **Platform features**
 - Integrated LDO enables direct connection to battery.
 - Wide ranges of crystal and external reference clock support.
 - High speed UART supports up to 3.2Mbps baud rate.
 - Built-in RAM and ROM with patch system.
 - External LPO clock support for sleep mode.
 - Supports standard HCI interface.
 - Capable to support Bluetooth 2.1 features.
 - Provides USB full-speed device function.
 - Supports a SPI interface to access external serial flash and EEPROM.
 - Embedded 128-bit eFuse for Bluetooth Address use.
3. TECHNICAL BRIEF

3.7.3 Functional Description

• Power Subsystem
MT6612 contains several LV (low voltage, 2.8V) linear regulators to provide power supply for every power domain, including RF circuitry and digital core circuitry. Besides, it has built in a BAT linear regulator which can be directly connected to battery. The BAT linear regulator is the power source for digital IO and those LV linear regulators. It supports the Li-ion battery. To keep it work properly, the battery voltage should be within the range from 3.2V to 4.3V.

The built-in LV linear regulators for RF circuitry are cap-less regulators. It provides high PSRR to keep excellent RF performance. MT6612 has internal enabling signals from the baseband to control different part of RF circuitry for optimized power control.

The DIG (digital) LV regulator requires an external capacitor. The main power control state machine is in the digital baseband circuitry. It requires no external enable signal for the DIG LV regulator. When the 1.2V power is supplied from the regulator on VDD12 pins, there will be an internal POR (Power-On Reset) to start the system. An external system reset to start the system is optional according to the application requirement.

The input pin LDO28EN is used by the host controller to turn on and off the BAT regulator. The host can control this pin to enable the whole MT6612 system. The enable voltage (V_{IH}) of pin LDO28EN is 1.4V. Be sure that the control signal meets the enable voltage requirement.

• Clock generation
There are two clock domains inside MT6612. The one is the System clock, which supports the RF and the major MODEM functions, while the other is the LPO clock, which keeps track the Bluetooth clock and could maintain the Bluetooth link in sleep mode.

MT6612 ha two options for the System clock source. The one is foe one-pin crystal input, and the other is for external clock source. The input pun ECLK_SEL is used to select between these two alternatives. If the crystal input is chosen, ECLK_SEL should be tied low, Otherwise, it should be tied high.

• Chip power management
There are 4 power modes that MT6612 operates in when it is powered on: Normal mode, Active mode, Idle mode, and Sleep mode. The following are brief introduction to each mode.

 • Power off : Power supply is not enabled or LDO28EN is low.
 • Normal mode : When MT6612 is powered on, it firstly enters Normal mode. In this mode, an internal digital PLL is turned on to supply the clock for baseband circuit.
 • Active mode : It is defined as the state that RF circuit will be turned on at the same time.
 • Idle mode : When the firmware finishes its task and starts to wait for next hardware trigger, it forces the hardware to enter this mode. In this mode, Part of the logic, like MCU, will enter a low power mode. RF circuit might still be operation in the mode.
 • Sleep mode : The baseband controller can determine to enter sleep mode to turn off most of the circuit in MT6612. In sleep mode, the system could be awakened after sleep time expired or by an external wake up signal from the host controller.
3. TECHNICAL BRIEF

- **MCU Subsystem**
The MCU (Micro-Controller Unit) subsystem contains ARM7 microprocessor, internal memory and the ROM patch function. It also contains the UART interface controller, USB full-speed device controller, serial flash interface controller and the power/clock management function.

- **Bluetooth Baseband Subsystem**
The Bluetooth baseband subsystem contains a baseband processor which supports the timing control, the bitstream processing, encryption, frequency hopping, and modulation/demodulation. It also contains the audio codec, Wi-Fi coexistence interface controller, and a sleep mode controller.

- **RF Subsystem**
MT6612 contains a fully integrated transceiver.
For TX path, the baseband transmit data is digitally modulated in the baseband processor, then up-converted to 2.4GHz RF channels through DA converter, filter, IQ up-converter, and the power amplifier. The power amplifier is capable of transmitting 9dBm power for class 1 operation.
For RX path, MT6612 is a low IF receiver architecture. An image-reject mixer down-converts the RF signal to the IF with the LO from the synthesizer, which could support different clock frequencies as the reference clock as described in section “Clock Generation”. The mixer output is then converted to digital signal, down-converted to baseband for demodulation. A fast AGC enables the effective discovery of device within the dynamic range of the receiver.
MT6612 features self calibration schemes to compensate the process and temperature variation to maintain high performance. Those calibrations are performed automatically right after system boot-up.
3.8 SIM Card Interface

Figure 3.8.1 SIM Connector Circuit Diagram
The Main Base Band Processor (MT6253) contains two dedicated smart card interfaces to allow the MCU to access the two SIM cards. Each interface can operate via 5 terminals. As shown in Figure 3.8.2, SIMVCC, SIMSEL, SIMRST, SIMCLK and SIMDATA are for one SIM interface, while SIM2VEE, SIM2SEL, SIM2RST, SIM2CLK and SIM2DATA are for the other one. The functions of the two SIM interfaces are identical; therefore, only first SIM interface will be described in this document.

The VSIM is used to control the external voltage supply to the SIM card and SIM SEL determines the regulated smart card supply voltage. SIMRST is used as the SIM card reset signal. Besides, SIMDATA and SIMCLK are used for data exchange purpose.

Figure 3.8.2 SIM Interface block diagram
3.9 Micro-SD Card Interface

The controller fully supports the Memory Stick bus protocol as defined in Format Specification version 2.0 of Memory Stick Standard (Memory Stick PRO) and the SD Memory Card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 2.0 as well as the Multi Media Card (MMC) bus protocol as defined in MMC system specification version 4.1. Since SD memory Card bus protocol is backward compatible to MMC bus protocol, the controller is capable of working well as the host on MMC bus under control of proper firmware. Furthermore, the controller also support SDIO card specification version 1.0 partially. However, the controller can only be configured as either the host controller.
3. TECHNICAL BRIEF

3.9.1 Pin Assignment

Since the controller can only be configured as either the host of Memory Stick or the host of SD/MMC Memory Card at one time, pins for Memory Stick and SD/MMC Memory Card are shared in order to save pin counts. The following lists pins required for Memory Stick and SD/MMC Memory Card. Figure 3.9.2 shows how they are shared. In Table 3.9.1, all I/O pads have embedded both pull up and pull down resistor because they are shared by both the Memory Stick and SD/MMC Memory Card. Pins 2, 4, 5, 8 are only useful for SD/MMC Memory Card. Pull down resistor for these pins can be used for power saving. All embedded pull-up and pull-down resistors can be disabled by programming the corresponding control registers if optimal pull-up or pull-down resistor are required on the system board. The pin VDDPD is used for power saving. Power for Memory Stick or SD/MMC Memory Card can be shut down by programming the corresponding control register. The pin WP (Write Protection) is only valid when the controller is configured for SD/MMC Memory Card. It is used to detect the status of Write Protection Switch on SD/MMC Memory Card.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>MMC</th>
<th>SD</th>
<th>MS</th>
<th>MSPRO</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SD CLK</td>
<td>0</td>
<td>CLK</td>
<td>CLK</td>
<td>SCLK</td>
<td>SCLK</td>
<td>Clock</td>
</tr>
<tr>
<td>2</td>
<td>SD DAT3</td>
<td>I/O PP</td>
<td>CD + DAT3</td>
<td>DAT3</td>
<td>DAT3</td>
<td>Data Line [Bit 3]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SD DAT0</td>
<td>I/O PP</td>
<td>DAT0</td>
<td>DAT0</td>
<td>SDIO</td>
<td>DAT0</td>
<td>Data Line [Bit 0]</td>
</tr>
<tr>
<td>4</td>
<td>SD DAT1</td>
<td>I/O PP</td>
<td>DAT1</td>
<td>DAT1</td>
<td>DAT1</td>
<td>Data Line [Bit 1]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SD DAT2</td>
<td>I/O PP</td>
<td>DAT2</td>
<td>DAT2</td>
<td>DAT2</td>
<td>Data Line [Bit 2]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SD CMD</td>
<td>I/O PP</td>
<td>CMD</td>
<td>CMD</td>
<td>BS</td>
<td>BS</td>
<td>Command Or Bus State</td>
</tr>
<tr>
<td>7</td>
<td>SD PWRON</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>VDD ON/OFF</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SD WP</td>
<td>1</td>
<td>VSS2</td>
<td>VSS2</td>
<td>INS</td>
<td>INS</td>
<td>Write Protection Switch in SD</td>
</tr>
<tr>
<td>9</td>
<td>SD INS</td>
<td>1</td>
<td>VSS2</td>
<td>VSS2</td>
<td>INS</td>
<td>INS</td>
<td>Card Detection</td>
</tr>
</tbody>
</table>

Table 3.9.1 Sharing of pins for Memory Stick and SD/MMC Memory Card controller
3.9.2 Card Detection

For SD/MMC Memory Card, detection of card insertion/removal by hardware is also supported. Because a pull down resistor with about 470 KΩ resistance which is impractical to embed in an I/O pad is needed on the signal CD/DAT3, and it has to be capable of being connected or disconnected dynamically onto the signal CD during initialization period, an additional I/O pad is needed to switch on/off the pull down resistor on the system board. The scenario of card detection for SD/MMC Memory Card is shown in Figure 3.9.2. Before SD/MMC Memory Card is inserted or powered on, SW1 and SW2 shall be opened for card detection of the host side. Meanwhile, pull down resistor RCD on system board shall attach onto the signal CD/DAT3 by the output signal RCDEN. In addition, SW3 on the card is default to be closed. Upon insertion of SD/MMC Memory Card the signal CD/DAT3 will have a transition from low to high. If SD/MMC Memory Card is removed then the signal CD/DAT3 will return to logic low. After the card identification process, pull down resistor RCD on system board shall disconnect with the signal CD/DAT3 and SW3 on the card shall be opened for normal operation.

Since the scheme above needs a mechanical switch such as a relay on system board, it is not ideal enough. Thus, a dedicated pin “INS” is used to perform card insertion and removal for SD/MMC. The pin “INS” will connect to the pin “VSS2” of a SD/MMC connector.

![Figure 3.9.2 Card Detection for SD/MMC Memory Card](image-url)
3. TECHNICAL BRIEF

3.10 LCD Interface

ILI9225 is a 262,144-color one-chip SoC driver for a-TFT liquid crystal display with resolution of 176RGBx220 dots, comprising a 528-channel source driver, a 220-channel gate driver, 87120 bytes RAM for graphic data of 176RGBx220 dots, and power supply circuit. ILI9225 can operate with low I/O interface power supply up to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD.

The ILI9225 also supports a function to display in 8 colors and a standby mode, allowing for precise power control by software. These features make the ILI9225 an ideal LCD driver for medium or small size portable products such as digital cellular phones or small PDA, where long battery life is a major concern.

Figure 3.10.1 LCD Interface
The RT9367C is an integrated solution for backlighting and phone camera input supply. The part contains a charge pump white LED driver and dual low dropout linear regulators. This IC can be shut down by pulling EN low.

In the section of charge pump, The RT9367C can power up 4 white LEDs with regulated constant current for uniform intensity. Each channel (LED1-LED4) can support up to 25mA. The part maintains highest efficiency by utilizing a x1/x1.5/x2 fractional charge pump and low dropout current regulators. An internal 5-bit DAC is used for brightness control. Users can easily configure up to 32-step of LED current by I2C interface.

In the section of linear regulator, The RT9367C comprises a dual channel, low noise, and low dropout regulator sourcing up to 300mA at each channel. The range of output voltage can be configured from 1.1V to 3.3V by I2C interface. The outputs of LDO offer 3% accuracy and low dropout voltage of 250mV @ 300mA. The LDO also provides current limiting and output short circuit thermal folded back protection.
3.11 Battery Charger Interface

The RT9524 is a fully integrated single-cell Li-Ion battery charger IC ideal for portable applications. The RT9524 optimizes the charging task by using a control algorithm including pre-charge mode, fast charge mode and constant voltage mode. The input voltage range of the VIN pin can be as high as 30V. When the input voltage exceeds the OVP threshold, it will turn off the charging MOSFET to avoid overheating of the chip.

In RT9524, the maximum charging current can be programmed with an external resistor. For the USB application, user can set the current to 100mA/500mA through EN/SET pin. For the factory mode, the RT9524 can allow 4.2V/2.3A power pass through to support system operation. It also provides a 50mA LDO to support the power of peripheral circuit. The internal thermal feedback circuit regulates the die temperature to optimize the charge rate for all ambient temperatures. The RT9524 provides protection functions such as under voltage protection, over voltage protection for VIN supply and thermal protection for battery temperature.

The RT9524 is available in a WDFN-10L 2x3 package to achieve optimized solution for PCB space and thermal considerations.
3.12 Keypad Interface

Figure 3.12.1 MAIN KEY STRUCTURE
The keypad can be divided into two parts: one is the keypad interface including 7 columns and 6 rows with one dedicated power-key, as shown in Figure 3.12.2; the other is the key detection block which provides key pressed, key released and de-bounce mechanisms. Each time the key is pressed or released, i.e. something different in the 6 x 7 matrix or power-key, the key detection block senses the change and recognizes if a key has been pressed or released. Whenever the key status changes and is stable, a KEYPAD IRQ is issued. The MCU can then read the key(s) pressed directly in KP_MEM1, KP_MEM2, KP_MEM3, and KP_MEM4 registers. To ensure that the key pressed information is not missed, the status register in keypad is not read-cleared by APB read command. The status register can only be changed by the key-pressed detection FSM.

![Figure 3.12.2 6x7 matrix with one power-key](image-url)
This keypad can detect one or two key-pressed simultaneously with any combination. Figure 3.12.3 shows one key pressed condition. Figure 3.12.4(a) and Figure 3.12.4(b) illustrate two keys pressed cases. Since the key press detection depends on the HIGH or LOW level of the external keypad interface, if keys are pressed at the same time and there exists a key that is on the same column and the same row with the other keys, the pressed key cannot be correctly decoded. For example, if there are three key presses: key1 = (x1, y1), key2 = (x2, y2), and key3 = (x1, y2), then both key3 and key4 = (x2, y1) are detected, and therefore they cannot be distinguished correctly. Hence, the keypad can detect only one or two keys pressed simultaneously at any combination. More than two keys pressed simultaneously in a specific pattern retrieve the wrong information.

Figure 3.12.3 One key pressed with de-bounce mechanism denoted

Figure 3.12.4 Two keys pressed, case 1 (b) Two keys pressed, case 2
3.13 Audio Front-End

3.13.1 General Description

The audio front-end essentially consists of voice and audio data paths. Figure 3.13.1 shows the block diagram of the audio front-end. All voice band data paths comply with the GSM 03.50 specification. Mono hands-free audio or external FM radio playback paths are also provided. The audio stereo path facilitates CD-quality playback, external FM radio, and voice playback through a headset.

![Figure 3.13.1 Block diagram of audio front end](image)

Figure 3.13.2 shows the digital circuits block diagram of the audio front-end. The APB register block is an APB peripheral that stores settings from the MCU. The DSP audio port (DAP) block interfaces with the DSP for control and data communications. The digital filter block performs filter operations for voice band and audio band signal processing. The Digital Audio Interface (DAI) block communicates with the System Simulator for FTA or external Bluetooth modules.
To communicate with the external Bluetooth module, the master-mode PCM interface and master-mode I2S/EIAJ interface are supported. The clock of PCM interface is 256 kHz while the frame sync is 8 kHz. Both long sync and short sync interfaces are supported. The PCM interface can transmit 16-bit stereo or 32-bit mono 8 kHz sampling rate voice signal. Figure 3.13.3 shows the timing diagram of the PCM interface. Note that the serial data changes when the clock is rising and is latched when the clock is falling.
I2S/EIAJ interface is designed to transmit high quality audio data. Figure 3.13.4 and Figure 3.13.5 illustrate the timing diagram of the two types of interfaces. I2S/EIAJ can support 32 kHz, 44.1 kHz, and 48 kHz sampling rate audio signals. The clock frequency of I2S/EIAJ can be $32 \times$ (sampling frequency), or $64 \times$ (sampling frequency). For example, to transmit a 44.1 kHz CD-quality music, the clock frequency should be 32×44.1 kHz = 1.4112 MHz or 64×44.1 kHz = 2.8224 MHz.

I2S/EIAJ interface is not only used for Bluetooth module, but also for external DAC components. Audio data can easily be sent to the external DAC through the I2S/EIAJ interface. In this document, the I2S/EIAJ interface is referred to as EDI (External DAC Interface).
3.14 KEY BACKLIGHT LED Interface

Key Backlight LED is controlled by KEYPAD_LED signal of MT6253. The built-in open drain output switch drives the Keypad LED in the handset. This switch is controlled by baseband with the enable register. The keypad LED can sink 150mA and will become high impedance as disabled.

Figure 3.14.1 Key Backlight Block
3.15 Vibrator Interface

Vibrator is driven by BJT with bias resistor. VBAT is connected with + terminal of vibrator and – terminal is connected with VIB_N. It is controlled by VIBRATOR signal of MT6253 with only ON/OFF function.

Figure 3.15.1 Vibrator Driver Block
4. TROUBLE SHOOTING

4.1 RF Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U101</td>
<td>Memory(256NOR/648pSDRAM) PF38F4050M0Y3DF</td>
</tr>
<tr>
<td>U102</td>
<td>Main Chip (MT6253)</td>
</tr>
<tr>
<td>U302</td>
<td>Bluetooth Chip (MT6612)</td>
</tr>
<tr>
<td>U303</td>
<td>TX Module (SKY77547)</td>
</tr>
<tr>
<td>X102</td>
<td>Crystal, 26MHz Clock</td>
</tr>
</tbody>
</table>

Figure 4.1
4. TROUBLE SHOOTING

4.2 RX Trouble

CHECKING FLOW

START

HP8960 : Test mode
62 CH, 7 level setting (TCH)
62CH, -60dBm setting (BCCH)
Spectrum analyzer setting
Oscilloscope setting

(1) Check (page52)
Crystal Circuit

(2) Check (page53)
Mobile SW & TX module

(3) Check PLL Control

Re-download SW or Do calibration again
4. TROUBLE SHOOTING

(1) Checking Crystal Circuit

TEST POINT

CHECKING FLOW

26 MHz O.K?

No

Replace TP1

Yes

Crystal is OK.
See next page to check PLL Circuit

CIRCUIT

WAVEFORM

Figure 4.2.1

BT_CLK26M

C103

4.7u

M32

C105

4.7u

H8

C107

4.7u

X102

TSX-3225 26MHZ_7_4PF

26MHz

2 1

3 4

T4

V4

L33

Y6

K34

V4

T4

FREF

AU_VCM

PWM

XTAL

1

XTAL2_GND

AVDD_RTC

CHG_EN

BT_CLK26M

TP1

XTAL2_GND

1

AVDD_RTC
4. TROUBLE SHOOTING

(2) Checking Mobile SW &Tx module

Figure 4.2.4
4. TROUBLE SHOOTING

CHECKING FLOW

Check TP1 of SW301

TP1 Signal is OK?

Yes

Check TP11 of U303

No

Replace Mobile SW (SW301)

Control Signal is (TP6,7,8,9,10)OK?

No

Check MT6253(U102)

Yes

TP2,3(High Band), TP4,5(Low Band) Signal is OK?

No

Replace TX module (U303)

Yes

Mobile SW & TX Module is OK.

EGSM Rx

<table>
<thead>
<tr>
<th>Mode</th>
<th>VRF</th>
<th>PA_EN</th>
<th>BAND_SW1</th>
<th>BAND_SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EGSM Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSM850 Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GSM_OUT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>DCS_PCS_OUT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
4.3 TX Trouble

CHECKING FLOW

START

HP8960 : Test mode
62 CH, 7 level setting (TCH)
62CH, -60dBm setting (BCCH)
Spectrum analyzer setting
Oscilloscope setting

(1) Check
Crystal Circuit

(2) Check
Mobile SW & Tx module

(3) Check PLL Control

Redownload SW or
Do calibration again
4. TROUBLE SHOOTING

(1) Checking Crystal Circuit

Figure 4.3.1

26 MHz O.K?

No

Replace TP1

Yes

Crystal is OK.
See next page to check PLL Circuit
4. TROUBLE SHOOTING

(2) Checking Mobile SW & TX Module

Figure 4.3.4
4. TROUBLE SHOOTING

CHECKING FLOW

Check TP2 & TP3

TP2 (High Band), TP3 (Low Band) Signal is OK?

Yes

Control Signal is (TP4,5,6,7,8,9) OK?

Yes

Check TP9 of U303?

Yes

TP1 Signal is OK?

Yes

TP11 signal same as TP1?

Yes

Mobile SW & TX module is OK.

No

Replace MT6253 (U102)

Check MT6253 (U102)

Replace MT6253 (U102)

Replace TX module (U303)

Replace SW301

EGSM Tx

<table>
<thead>
<tr>
<th>Mode</th>
<th>VRF</th>
<th>PA_EN</th>
<th>BAND_SW1</th>
<th>BAND_SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DCS Rx</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EGSM Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GSM850 Rx</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GSM_OUT</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>DCS_PCS_OUT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
4. TROUBLE SHOOTING

4.4 Power On Trouble

Figure 4.4.1

Figure 4.4.2

Figure 4.4.3 Remote power on
4. TROUBLE SHOOTING

Figure 4.4.4 Power Block of LG-A155
4. TROUBLE SHOOTING

CHECKING FLOW

START

Check Battery Voltage
> 3.30V

NO

Charge or Change Battery

YES

Push power-on key
And check the level change
into high of POWERKEY

NO

Check the contact of power key
Or dome-switch

YES

Check the voltage of
The LDO outputs at U102

NO

Replace U102 (MT6253)

YES

Logic level at RPWRON of R101
HIGH(above 1.2V)?

NO

Re-download software

YES

Is the phone power on?

NO

Replace U102 and
Re-download software

YES

Does it work properly?

NO

Replace the main board

YES

The phone will
Properly operating
4.5 Charging Trouble

Figure 4.5.1

Circuit Diagram:

- **VIN**: Input Voltage
- **BATT**: Battery
- **GND1**: Ground 1
- **ISET**: Current Set
- **LD0**: Logic 0
- **IEOC**: I/O Control
- **EUSY0410801**: Integrated Circuit
- **R208**: 3K ohm, 1/16W, F, 1005, R/TP
- **C222**: 0.1uF
- **R209**: 820 ohm, 1/16W, F, 1005, R/TP
- **EUSY0410801**: Integrated Circuit
- **V_BUS**: Voltage Bus
- **VIO**: Voltage Input
- **VBAT**: Voltage Output
- **PGB**: Power Good
- **CHG_EN**: Charge Enable
- **DNI**: Driver Not In Use

Related Test Points:

- **CN202**: Connector 202
- **U201**: IC 201
4. TROUBLE SHOOTING

CHECKING FLOW

START

Change the battery

Battery is charged?

YES

Charging is properly operating

NO

Is I/O Connector(CN202) well-soldered?

YES

NO

Resolder the CN202 (Pin 1 : V_BUS)

Check the voltage at Pin 1 of RT9524 = 5V?

YES

NO

The TA is out of order

Change the TA

Is the voltage at Pin 10 of RT9524 = 4.9V?

YES

NO

Replace the U201

Battery is charged?

YES

NO

Replace the main board

Charging is properly operating
4.6 Vibrator Trouble

Figure 4.6

CIRCUIT

TEST POINT

TP2 TP1

Vibrator PAD

Main IC (U102)

IRDA_PD_076
SD_PWREN_GPIO73
FM_32K_GPIO75
VBOOST1_SW
VBOOST1

VIBRATOR

TP1 R414 1k

R415 100k

TP2

VBAT

Q400 Q403

Q400 R416 10
4. TROUBLE SHOOTING

CHECKING FLOW

SETTING: Enter the engineering mode, and set vibrator on at vibration of BB test menu

1. **START**
 - Check the soldering of vibrator?
 - **YES**
 - Is the voltage at TP2 (+) high?
 - **NO**
 - Replace the Q400
 - **YES**
 - Replace the U102
 - **NO**
 - Resolder the Pad.

2. **NO**
 - Replace vibrator

Vibrator Working well!
4.7 LCD Trouble

Figure 4.7.1
4. TROUBLE SHOOTING

CIRCUIT

Charge Pump

TP5
4. TROUBLE SHOOTING

Graph 4.7.1. LCD Backlight Control Signal Waveform

Graph 4.7.2. LCD Data Waveform
4. TROUBLE SHOOTING

CHECKING FLOW

START

Is the connection of TP1 with LCD connector ok?

YES

Check the Voltage Level of TP5 is about Battery voltage? (SWIF signal is high level)

YES

Check the Waveform of EMI filter?

YES

Does LCD work properly?

YES

LCD working well!

NO

Resoldering or Replace U400

NO

Resoldering EMI filter. (TP2, TP3, TP4)

NO

Reassemble LCD connector

YES

NO

NO

Replace LCD module
4.8 Speaker Trouble

TEST POINT

CIRCUIT

Figure 4.8.1
4. TROUBLE SHOOTING

CHECKING FLOW

START < Cal 1 >
→ Check the state of contact of speaker
 Yes → Check the Audio signal TP1
 Yes → Check the Audio signal TP3
 Yes → Speaker Working well!!
 No → Replace/Change speaker

START < Mp3 >
→ Check the state of contact of speaker
 Yes → Check the Audio signal TP1
 Yes → Check the Audio signal TP4
 Yes → Speaker Working well!!
 No → Change the TP2
 No → Replace/Change the U102
4.9 Earphone Trouble

Figure 4.9.1
4. TROUBLE SHOOTING

CHECKING FLOW

START

Resolder TP1

Check the TP2 is LOW?

NO → Resolder TP 2

YES

Is FBTP8(JACK DETECT) LOW?

NO → Resolder TP1

YES

Set the audio part of the test equipment to PRBS or Continuous wave mode

Can you hear the sound from the earphone?

NO

Can you hear the sound from the earphone?

NO

Resolder TP, (Call) or Resolder TP5 (Mp3)

YES

Resolder TP4, (Call)

YES

Shift the audio part of the test Equipment to echo mode

Can you hear your voice from the earphone?

NO → Change the earphone and try again

NO

Can you hear your voice from the earphone?

NO

Resolder TP6,TP7,TP8,TP9, TP10,TP11,TP12

YES

Earphone will work properly
4. TROUBLE SHOOTING

4.10 Receiver Trouble

TEST POINT

Figure 4.11.1

CIRCUIT
4. TROUBLE SHOOTING

SETTING: After initialize Agilent 8960, Test EGSM900, DCS mode (or GSM850, PCS mode)
Set the property of audio as PRBS or continuous wave. Set the receiving volume of mobile as Max.

CHECKING FLOW

START

Does waveform at TP1 fluctuate?

NO

Resoldering/Change the CN200 or CN500

YES

Does waveform at TP2 Fluctuate?

NO

Replace/Change the U102

YES

Is receiver connected properly?

NO

Change the receiver

YES

Receiver will work properly.
4. TROUBLE SHOOTING

4.11 Microphone Trouble

Figure 4.11.1

TEST POINT

CIRCUIT

Figure 4.12.1
4. TROUBLE SHOOTING

SETTING: After initialize Agilent 8960, Test EGSM900, DCS mode (or GSM850, PCS mode)

CHECKING FLOW

START

Check microphone sound hole

Make a phone call, then check TP2 mic bias signal comes from U102?

NO

1. Check mic Bias signal line
2. Change the U102

YES

Check the signal Level at each side of TP1. Is it a few tens mV AC?

NO

Change the microphone

YES

Check the soldering of TP3, TP4, TP5, TP6, TP7

NO

Resolder component

YES

Microphone will work properly.
4.12 SIM1 Card Interface Trouble

Figure 4.12.1
4. TROUBLE SHOOTING

CHECKING FLOW

START

Does the SIM card Support 1.8V?

NO
Change the SIM Card. This phone supports 1.8V SIM card.

YES

Is Voltage at the S1 of TP1 1.8V?

NO

Voltage output of VSIM LDO Is 1.8V?

NO
Change the U102

YES

Resolder TP1

YES

Change the SIM Card and try again Does it work Properly?

NO
redownload SW. Does it work Properly?

NO
Change the main board

YES
SIM card is properly working

NO
SIM card is properly working.
4. TROUBLE SHOOTING

4.13 SIM2 Card Interface Trouble

Figure 4.13.1
4. TROUBLE SHOOTING

CHECKING FLOW

START

Does the SIM card Support 1.8V ?

NO

Change the SIM Card.
This phone supports 1.8V SIM card.

YES

Is Voltage at the pin1 of TP1 1.8V?

NO

Voltage output of VSIM LDO Is 1.8V?

NO

Change the U102

YES

Resolder TP1

Change the SIM Card and try again.
Does it work Properly?

NO

Redownload SW.
Does it work Properly?

NO

Change the main board

YES

SIM card is properly working

YES

SIM card is properly working.
4.14 KEY backlight Trouble

Figure 4.14.1
4. TROUBLE SHOOTING

CHECKING FLOW

START

VBAT = high ?

NO

Check U102

YES

TP1, TP2 = Low ?

NO

KEYPAD_LED = Low ?

NO

Check U102

YES

NO

Replace or resolder TP1 or TP2 or LED

YES

Backlight will work properly.
4. TROUBLE SHOOTING

4.15 Micro SD Trouble

TEST POINT

Figure 4.15.1

CIRCUIT
4. TROUBLE SHOOTING

CHECKING FLOW

START

Micro SD Detect OK?

YES

Replace Micro SD Card

NO

Check the TP3=2.8V?

YES

Change U102

NO

MMC_DET(TP2) Is High?

YES

Re-attach or Replace TP1

NO

Check out MC_CLK & Data Timing OK?

YES

Re-download SW

NO

Replace Micro SD Card will work properly
4. TROUBLE SHOOTING

4.16 Bluetooth Trouble

Figure 4.16.1
4. TROUBLE SHOOTING

CHECKING FLOW

START
Check of BT Ant condition

A condition is good?

YES

NO
Replace TP1

Check condition of matching components (TP2, TP3)

A condition is good?

YES

NO
Give the addititory solder in TP2,TP3

Check Bias Voltage VBAT at TP4

YES

NO
Replace U102

Check Bias Voltage BT_2V8 at TP5

YES

NO
Replace TP6

Check TP7

YES

NO
Replace TP8

BT will work properly
4. TROUBLE SHOOTING

4.17 FM Radio Trouble

Figure 4.17.1

CIRCUIT
4. TROUBLE SHOOTING

CHECKING FLOW

START
Check of ear_jack condition

A condition is good?
YES
Check condition of matching components (TP2)

A condition is good?
YES
Check Bias Voltage TP3, TP4

A condition is good?
YES
FM_radio will work properly

NO
Replace TP1

START
Check of earless condition

Check condition of intenna

A condition is good?
YES
Give the additory solder in TP2

A condition is good?
YES
Check Bias Voltage TP3, TP4

A condition is good?
YES
Replace U102

NO
Replace Battery Cover

Replace U102

Check F Input & output signal at I2C(TP6)

A condition is good?
YES
Replace U102

NO

A condition is good?
YES
Replace Battery Cover
5. DOWNLOAD

![DOWNLOAD Diagram]
5. DOWNLOAD

![Download Procedure]

1. Click on the 'Download' button.
2. Select 'Country' and 'Model' from the dropdown menus.
3. Double click on the SW File to download.

![Install Procedure]

1. Unzip the file.
2. Double click on the setup file to install.

>> The DLL uses the latest approved version.
5. DOWNLOAD

Double Click (Install)

Completing the USB PortMapping Setup 1.4 Setup Wizard

USB PortMapping Setup 1.4 has been installed on your computer.

Click Finish to close this wizard.

Click to start the installation.
5. DOWNLOAD

1. Check
2. Click
3. Click
4. Click
5. Click
6. Click

Check
5. DOWNLOAD

"Remove the Phone and I/O Cable"

[Image of a phone connected to a computer with text indicating the removal of the phone and I/O cable.]
5. DOWNLOAD

![Image of a phone with a cable connected](image_url)

“Phone and I/O Cable” Connect

![Image of USBMap software](image_url)

- When the phone is connected for a while under USB Map, it will be recognized as a removable disk. Hence, if the USB device item is properly set, click the “Save & Exit” button.

1. **Note:**
 - When the phone is connected for a while under USB Map, it will be recognized as a removable disk. Hence, if the USB device item is properly set, click the “Save & Exit” button.

2. **Click:**
5. DOWNLOAD

"Remove the Phone and I/O Cable"
5. DOWNLOAD
5. DOWNLOAD

[Image of Configuration dialog box]

- **NOTE:** If the USB icon is created when selecting DLL, this model supports the USB DiL function and if not created, this is the model that processes only UART (=serial).

- **Choice:**
 - [] USB
 - [] Start COM
 - [] End COM

- **Most modern PC's built-in serial ports are designed for maximum 115200 bps data rate.**

- **I recommend you use High Speed Serial Devices (USB or PC).**

[Image of LG-GSM Multi Download dialog box]

- **Click**
 - [] START

- **USB 1**

- **Wait phone connecting**
5. DOWNLOAD

Phone and I/O Cable Connect

LG GSM Multi Download [Ver 3.0]

- **File:**
- **Setting:**
- **About:**

START

Model: LG-A155

SW Version: LG-A155-AT-01-M0Sv-724-02-SEP-14-2009-01

COM 1

- **Transmission amount:**
 - **[BIN] 0%**

- **Start Download**
- **Start boot process**
- **Device synchronized**
- **Boot loader is active**
- **EEL version: Default_RAM_Bootloader**
- **Boot mode is BB**
- **Using Footer CRC. Writing all blocks**
- **Package length in 2040**
- **Baud rate set to 921600**
- **Get flash id**
- **CPI stage 1**
- **Flash ID is B88100G8**
- **CPI stage 2**
- **Boot process finished**
- **Sending receipt**
- **Load region 0**
- **Use flash pressure**

When it's execution-screen.
5. DOWNLOAD

PASS(755 sec)

‘PASS’ > The End
7. CIRCUIT DIAGRAM
8. BGA PIN MAP

BGA IC pin check (U102)

Figure 3 Top View of MT6253A aQFN 11.5mm * 11.5mm 0.47mm pitch package

: not in use
9. PCB LAYOUT

LG-A155_MAIN_SPFY0236101-1.0_TOP

LD400 & LD401
- No Key Backlight
9. PCB LAYOUT

- IC200: No USB, No Music
- U201: No Charging
- M200: The Audio working bad
- BAT101 (Backup Battery): No service
- U302: The Bluetooth working bad
- U303 (TX Module): Can’t make a call, Tx Low power, Not good BER, No Service
- SW301 (mobile switch): Can’t make a call, Tx Low power, Not good BER, No Service
- CN200: No u-SD Memory, No Receiver, No Vibrator
- CN401: No LCD Display
- U400: No LCD Back Light
- U101 (Memory): No booting

LG-A155_MAIN_SFPY0236101-1.0_BOT
9. PCB LAYOUT

- No FM RADIO
- No Vibrator
9. PCB LAYOUT

LG-A155_FPCB_SPCY0261001-1.0_PLACE_TOP

LG-A155_FPCB_SPCY0261001-1.0_PLACE_BOT
10. ENGINEERING MODE

Engineering mode is designed to allow a service man/engineer to view and test the basic functions provided by a handset. The key sequence for switching the engineering mode on is “1809#*155# Select. Pressing END will switch back to non-engineering mode operation. Use Up and Down key to select a menu and press ‘select’ key to progress the test. Pressing ‘back key will switch back to the original test menu.

[1] Device test
 [1-1] All auto
 [1-2] Key press
 [1-3] Sound
 [1-4] Vibrator
 [1-5] External memory
 [1-6] SIM
 [1-7] Camera
 [1-8] Audio loopback

[2] ELT mode
 [2-1] Automatic
 [2-1-1] 1 Time
 [2-1-2] 2 Times
 [2-1-3] 3 Times
 [2-1-4] 4 Times
 [2-1-5] 5 Times
 [2-1-6] 25 Times
 [2-1-7] 100 Times
 [2-1-8] Infinite Times
 [2-2-1] LCD backlight
 [2-2-2] Ringtone
 [2-2-3] Vibrator
 [2-2-4] Camera
 [2-2-5] Audio loopback

[3] SW sanity test
 [3-1] E serial NO
 [3-2] UA string
 [3-3] Unlock SIM
 [3-4] DB check

 [5-1] Main SW

[6] Usage info
 [6-1] Call timer

[7] ERS
 [7-1] Client status
 [7-1-1] Active
 [7-1-2] Active + File save
 [7-1-3] Inactive
 [7-1-4] Inactive + File save
 [7-1-5] Light mode
 [7-1-6] Full mode
 [7-1-7] Retry

 [7-2] ERS test
 [7-2-1] QM test
 [7-2-2] Watch dog
 [7-2-3] Divide by zero
 [7-2-4] SWI
 [7-2-5] Fatal

 [7-3] Carrier setting
10. ENGINEERING MODE

[8] Engineer mode

[8-1] FPRI test
[8-2] User pattern test
[8-3] PS

[8-3-1] Band selection
 [8-3-1-1] SIM1
 [8-3-1-1-1] Auto
 [8-3-1-1-2] GSM850
 [8-3-1-1-3] GSM900
 [8-3-1-1-4] DCS1800
 [8-3-1-1-5] PCS1900
 [8-3-1-2] SIM2
 [8-3-1-2-1] Auto
 [8-3-1-2-2] GSM850
 [8-3-1-2-3] GSM900
 [8-3-1-2-4] DCS1800
 [8-3-1-2-5] PCS1900

[8-4] MMS
[8-5] DRM
[8-6] RF (BER)

[8-6-1] Review
[8-6-2] LCD
[8-6-3] Vibrator

[8-7] Baseband

[8-7-1] Charging info
[8-7-2] Battery info
[8-7-3] LCD (Main)

[8-8] Audio tuning
[8-9] Bluetooth

[8-9-1] Set BT address
[8-9-2] BT Audio/RF test

[8-9-2-1] Audio test
[8-9-2-2] RF test

[8-9-3] Test menu

[8-10] Aging test

[9] Wise debug

[10] MTK debug

[10-1] Catcher

[10-1-1] Port
 [10-1-1-1] NULL
 [10-1-1-2] UART (microUSB)
 [10-1-1-3] UART (Debug)
 [10-1-1-4] UART (COM)

[10-1-2] Baudrate
 [10-1-2-1] 921600
 [10-1-2-2] 460800
 [10-1-2-3] 115200

[10-2] Sleep mode
 [10-2-1] Enable
 [10-2-2] Disable

[10-3] DCM
 [10-3-1] Enable
 [10-3-2] Disable

[10-4] Memory dump
 [10-4-1] Enable
 [10-4-2] Disable

[10-5] Buffer monitor
 [10-5-1] Disable
 [10-5-2] All
 [10-5-3] 8 Bytes
 [10-5-4] 16 Bytes
 [10-5-5] 32 Bytes
 [10-5-6] 64 Bytes
 [10-5-7] 128 Bytes
 [10-5-8] 256 Bytes
 [10-5-9] 512 Bytes
 [10-5-10] 1024 Bytes
 [10-5-11] 2048 Bytes

[10-6] FS trace mode
 [10-6-1] Disable
 [10-6-2] Error
 [10-6-3] API + Error

[10-7] Watch dog
 [10-7-1] Enable
 [10-7-2] Disable
11. RF CALIBRATION

11.1 Configuration of Tachyon

11.1.1 Configuration of directory

```
LGE/    Tachyon/
      Common/
            Communication.dll
            DataManager.dll
            PhoneControl.dll
            SwitchControl.dll
            TachyonLogic.dll

            Config/
                  MS Cable Info/
                        .msl
                        .mrl

                        Login.ini
                        SystemLoss.ini
                        SystemOption.ini
                        Workinfo.ini
                        Instrument.ini

                        Log/
                              Log
                              Adi/
                              Emic/
                              Infineon
                              Qualcomm

                        Mode/

                        DCx/
                              DCX_Register.bat
                              TeeChart.ocx
                              VallenIL.ocx

                        PhoneCmd/
                              PhoneCommand.dll
                              PID.txt

                        Temp/
                              TestData/
                              CalData_0.ini
                              TestTeam.csv

                        dflowo.dll
                        MFC42x.dll
                        MFCN42x.dll
                        MFC04242x.dll
                        MSVCP60.dll
                        Msvcr1x.dll
                        ProfUl320mem.dll
                        OMSL_MSVCP6.dll
                        Tachyon.exe

                        BKT/
                              LG-A155_LCalibration.xml
                              LG-A155_LCalibSetup.xml
                              LG-A155_LSequence.xml
                              LG-A155_LWin.ini

                              LG-A155_CalLogic.dll
```

11. RF CALIBRATION

11.1.2 Description of basic folders

<table>
<thead>
<tr>
<th>Folder</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachyon</td>
<td>Exe file and MFC dll, UI dll is present.</td>
</tr>
<tr>
<td>Common</td>
<td>Common dll files. (XML Data I/O, Auto Test Logic, Tachyon Logic Control, Communication)</td>
</tr>
<tr>
<td>Config</td>
<td>Environment files. (Port configuration, Loss adjust)</td>
</tr>
<tr>
<td>Instrument</td>
<td>Tester control dll.</td>
</tr>
<tr>
<td>Model</td>
<td>Model files is present. (Model -> Solution (Qualcomm, EMP, ADI, INFINEON) -> MODEL NAME(LGGM630, LGSH470, ..) -> BUYER NAME(SKT, TEL, VIVO, …)</td>
</tr>
<tr>
<td>OCX</td>
<td>Component files.</td>
</tr>
<tr>
<td>PhoneCmd</td>
<td>Phone communication file</td>
</tr>
<tr>
<td>Report</td>
<td>Report Files is present. (Cal data, test data)</td>
</tr>
</tbody>
</table>

11.1.3 Description of configuration files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘MODEL NAME’_Calibration.XML</td>
<td>There are informations to calibrate. It consist of calibration items.</td>
</tr>
<tr>
<td>‘MODEL NAME’_CallSetup.XML</td>
<td>There are informations to call.</td>
</tr>
<tr>
<td>‘MODEL NAME’_NV.INI</td>
<td>It consists of default values. It is written when ‘cal&auto’ is begun.</td>
</tr>
<tr>
<td>‘MODEL NAME’_Sequence.XML</td>
<td>It is described a testing procedures.</td>
</tr>
</tbody>
</table>
11.2 How to use Tachyon

11.2.1 Model selection

Follow the procedure before start calibration & auto test

a. Click the icon, in tool bar.

Then, You can make a choice of LG-A155 for loading cfg files before run.

b. Select model name and then do double-click the buyer name.
You will see configuration files loaded in the right window with PASS information above

< Example of selection of model name>
11.2.2 Start cal & auto

a. Click calibration & autotest button, in Tool bar

b. Calibration & autotest will be executed in order.

1) Precede Action.
 - NV write
 - Test command send.
2) RF Calibration
3) RF Auto test
4) After action
 - Phone reset
 - Change UE to AMSS
12. EXPLODED VIEW & REPLACEMENT PART LIST

12.1 EXPLODED VIEW

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGK00</td>
<td>CoverAssembly,Front</td>
</tr>
<tr>
<td>AKAC00</td>
<td>KEYPAD ASSY,MAIN</td>
</tr>
<tr>
<td>MWAC00</td>
<td>WINDOW, LCD</td>
</tr>
<tr>
<td>ACGM00</td>
<td>COVER ASSY,REAR</td>
</tr>
<tr>
<td>SNGF00</td>
<td>Antenna, Helical</td>
</tr>
<tr>
<td>GGZZ00</td>
<td>Screw, Tapping</td>
</tr>
<tr>
<td>SAFY00</td>
<td>PCB Assembly, Main</td>
</tr>
<tr>
<td>SJMY00</td>
<td>Motor, DC</td>
</tr>
<tr>
<td>ABFZ00</td>
<td>BRACKET ASSY</td>
</tr>
<tr>
<td>SURY00</td>
<td>Receiver</td>
</tr>
<tr>
<td>SUSY00</td>
<td>Speaker Module</td>
</tr>
<tr>
<td>ADCA00</td>
<td>Dome Assembly, Metal</td>
</tr>
<tr>
<td>MCBA00</td>
<td>Can, Shield</td>
</tr>
<tr>
<td>SACY00</td>
<td>PCB Assembly, Flexible</td>
</tr>
<tr>
<td>SUMY00</td>
<td>Microphone, Condenser</td>
</tr>
<tr>
<td>SVLM00</td>
<td>LCD Module</td>
</tr>
<tr>
<td>SNMF00</td>
<td>Antenna, Helical</td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

12.2 Replacement Parts

<Mechanic component>

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AAAY00</td>
<td>Addition Assembly</td>
<td>AAAY0513501</td>
<td>LG-A155 INDDG GG:Gold Gray -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AFN053800</td>
<td>Manual Assembly, Operation</td>
<td>AFN75254001</td>
<td>LGA155.AINDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MBM087200</td>
<td>Card, Warranty</td>
<td>MCDF0001111</td>
<td>COMPLEX KG270 INDBK ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MFL053800</td>
<td>Manual, Operation</td>
<td>MFL67005501</td>
<td>PRINTING LGA155.AINDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MCJA00</td>
<td>Cover, Battery</td>
<td>MCJA0123801</td>
<td>COMPLEX LG-A155 INDDG ZZ:Without Color MOLD, PC, LUPOY SC-1004A, . . .</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AGF000000</td>
<td>Package Assembly</td>
<td>AGF75987801</td>
<td>LGA155.AINDDG ZZ:Without Color LG-A155 IND(TR1-1H/IND UB/6WD/Seal2/MRP Label/500ea)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>APLY00</td>
<td>Pallet Assembly</td>
<td>APLY0003209</td>
<td>KS360 ZAFBK ZZ:Without Color TDR TR1-1 Pallet Sleeve/6WD Pallet</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MBPZ00</td>
<td>Damper</td>
<td>MBPZ0219601</td>
<td>COMPLEX KM500 ROMBB ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MPCY00</td>
<td>Pallet</td>
<td>MPCY0019330</td>
<td>COMPLEX KS360 ZAFBK ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MAY084000</td>
<td>Box, Unit</td>
<td>MAY64849102</td>
<td>BOX Paper 120 56 90 4 COLOR LGA155.AINDDG ZZ:Without Color LG-A155 IND(TR1-1H)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MBAD00</td>
<td>Bag, Vinyl</td>
<td>MBAD0005204</td>
<td>COMPLEX LG-LX260 SPRAG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MBEE00</td>
<td>Box, Master</td>
<td>MBEE0059801</td>
<td>COMPLEX KS360 ACNRD ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MLAJ00</td>
<td>Label, Master Box</td>
<td>MLAJ0004402</td>
<td>COMPLEX CG300 CGR ZZ:Without Color LABEL,MASTER BOX(for CGR TDR 2VER, mbox_label)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MLAP</td>
<td>Label, Unit</td>
<td>MLAP0001138</td>
<td>COMPLEX LG-RD6100 RLC ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MLAQ</td>
<td>Label, Unit Box</td>
<td>MLAQ0015213</td>
<td>COMPLEX KG270 INDBK ZZ:Without Color PRINTING,GSM MRP LABEL-Made by LGE(100*48)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MLAZ00</td>
<td>Label</td>
<td>MLAZ0050901</td>
<td>COMPLEX KU990 GBRBK ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>APEY00</td>
<td>Phone Assembly</td>
<td>APEY0968501</td>
<td>LG-A155 INDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ACGY00</td>
<td>Cover Assembly, EMS</td>
<td>ACGY0075401</td>
<td>LG-A155 INDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACGK00</td>
<td>Cover Assembly, Front</td>
<td>ACGK0174901</td>
<td>LG-A155 INDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AKAC00</td>
<td>Keypad Assembly, Main</td>
<td>AKAC0021001</td>
<td>LG-A155 INDDG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCJK00</td>
<td>Cover, Front</td>
<td>MCJK0138601</td>
<td>COMPLEX LG-A155 INDDG ZZ:Without Color MOLD, PC, LUPOY SC-1004A, . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MFBZ01</td>
<td>Filter</td>
<td>MFBZ0030001</td>
<td>COMPLEX LG-A155 INDDG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MFBZ00</td>
<td>Filter</td>
<td>MFBZ0030101</td>
<td>COMPLEX LG-A155 INDDG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
</tbody>
</table>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC.
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MFEZ00</td>
<td>Frame</td>
<td>MFEZ0041301</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color PRESS, STS, . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MPBG00</td>
<td>Damper,LCD</td>
<td>MPBG0115901</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MTAB00</td>
<td>Tape,Protect</td>
<td>MTAB0435201</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MTAD00</td>
<td>Tape,Window</td>
<td>MTAD0136601</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MWAC00</td>
<td>Window,LCD</td>
<td>MWAC0155301</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color CUTTING, PMMA MR 200, . . .</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACGM00</td>
<td>Cover Assembly,Rear</td>
<td>ACGM0172701= 9</td>
<td>LG-A155 INDGG ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCCZ01</td>
<td>Cap</td>
<td>MCCZ0048201</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCCZ02</td>
<td>Cap</td>
<td>MCCZ0048301</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MCJN00</td>
<td>Cover,Rear</td>
<td>MCJN0130601</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color MOLD, PC LUPOY SC-1004A, . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MLAB</td>
<td>Label,After Service</td>
<td>MLAB0004801</td>
<td>COMPLEX LG-LB3300 LGT ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MPBZ00</td>
<td>Damper</td>
<td>MPBZ0342601</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MPBZ01</td>
<td>Damper</td>
<td>MPBZ0342701</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GGZZ00</td>
<td>Screw,Tapping</td>
<td>GGZZ0005101</td>
<td>GGZZ0005101 CH + - 1.6mM 4.5mM MSWR FZB SERVEONE CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MLAA00</td>
<td>Label,Approval</td>
<td>MLAA00062301</td>
<td>COMPLEX KB770 DEUBK ZZ:Without Color -</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ABFZ00</td>
<td>Bracket Assembly</td>
<td>ABFZ0026201= 10</td>
<td>LG-A155 INDGG ZZ:Without Color PCB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MBFZ00</td>
<td>Bracket</td>
<td>MBFZ0059201</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MCIZ00</td>
<td>Contact</td>
<td>MCIZ0006801</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color PRESS,BeCu,</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MFBZ00</td>
<td>Filter</td>
<td>MFBZ0030201</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MPBZ01</td>
<td>Damper</td>
<td>MPBZ0342901</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MTAZ00</td>
<td>Tape</td>
<td>MTAZ0361101</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MTAZ01</td>
<td>Tape</td>
<td>MTAZ0361301</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MTAZ02</td>
<td>Tape</td>
<td>MTAZ0361401</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MTAZ03</td>
<td>Tape</td>
<td>MTAZ0361501</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty), . . .</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Location No.</td>
<td>Description</td>
<td>Part Number</td>
<td>Spec</td>
<td>Remark</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>5</td>
<td>ADCA00</td>
<td>Dome Assembly, Metal</td>
<td>ADCA0123401</td>
<td>LG-A155 INDGG ZZ:Without Color</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MCBA00</td>
<td>Can, Shield</td>
<td>MCBA0085801</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color PRESS, STS</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MEV000001</td>
<td>Insulator</td>
<td>MEV63651401</td>
<td>COMPLEX LGA165.AINDKV ZY:Color Unfixed</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MIDZ00</td>
<td>Insulator</td>
<td>MIDZ0270401</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color COMPLEX, (empty)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MTAZ00</td>
<td>Tape</td>
<td>MTAZ0346601</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color COMPLEX, (empty)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MTAZ01</td>
<td>Tape</td>
<td>MTAZ0372901</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color COMPLEX, (empty)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MPBZ00</td>
<td>Damper</td>
<td>MPBZ0343001</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CN502</td>
<td>Contact</td>
<td>MCIZ0009501</td>
<td>COMPLEX LG-A165 INDKV ZZ:Without Color PRESS, BeCu</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

12.2 Replacement Parts

<Main component>

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>EAG110200</td>
<td>Connector, Terminal Block</td>
<td>ENZY0015701</td>
<td>HSBC-3P-65 3P 3.00MM STRAIGHT SMD R/TP - HAN SHIN TERMINAL CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MSAZ00</td>
<td>Sheet</td>
<td>MSAZ0072801</td>
<td>COMPLEX LG-A155 INDGG ZZ:Without Color COMPLEX, (empty)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EAA010400</td>
<td>Antenna, Helical</td>
<td>SNGF0063802</td>
<td>LS01-I-10V33-A0 3.0,-2 dBd, LG-A165 Main Internal GSM850+GSM900+DCS+PCS, QUAD,-2.0,50ohm, 3.0 LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SAFY</td>
<td>PCB Assembly, Main</td>
<td>SAFY0387502</td>
<td>LG-A155 INDGG MAIN,B</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAFB00</td>
<td>PCB Assembly, Main, Insert</td>
<td>SAFB0125401</td>
<td>LG-A155 INDGG MAIN,B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SURY00</td>
<td>Receiver</td>
<td>SURY0010118</td>
<td>EMR1207SPB2P ASSY, db, ohm, 1207*2.5T, PIN, EM-TECH</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SUSY00</td>
<td>Speaker Module</td>
<td>SUSY0024807</td>
<td>ISDR-1634-08C-01 ASSY, 8 ohm, 91 dB, 16 mm, 3.4T spring,CONTACT GoerTek Inc.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SACY00</td>
<td>PCB Assembly, Flexible</td>
<td>SACY0124101</td>
<td>LG-A165 INDKV FLEXIBLE 1.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SACE00</td>
<td>PCB Assembly, Flexible, SMT</td>
<td>SACE0112001</td>
<td>LG-A165 INDKV FLEXIBLE 1.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SACC00</td>
<td>PCB Assembly, Flexible, SMT Bottom</td>
<td>SACC0084901</td>
<td>LG-A165 INDKV FLEXIBLE 1.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CN600, CN601</td>
<td>Connector, BtoB</td>
<td>ENBY0039501</td>
<td>GB042-20P-H10-E3000 20P 0.40MM STRAIGHT PLUG SMD R/TP 1M - LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SPCY00</td>
<td>PCB, Flexible</td>
<td>SPCY0261001</td>
<td>LG-A165 INDKV, FLEXIBLE, C, POLYI, 0.15 mm, DOUBLE</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EBR072900</td>
<td>PCB Assembly, Sub</td>
<td>SAJY0055701</td>
<td>LG-A155 INDGG SUB,B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAJB00</td>
<td>PCB Assembly, Sub, Insert</td>
<td>SAJB0025801</td>
<td>LG-A155 INDGG SUB,B</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SJMY00</td>
<td>Motor, DC</td>
<td>SJMY0007104</td>
<td>3V 80mA 0A 12KRPM 0RPM 0SEC 0GF.CM 0OHM</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAJE00</td>
<td>PCB Assembly, Sub, SMT</td>
<td>SAJE0042601</td>
<td>LG-A165 INDKV SUB 1.0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SAJC00</td>
<td>PCB Assembly, Sub, SMT Bottom</td>
<td>SAJC0041301</td>
<td>LG-A165 INDKV SUB 1.1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C500, C501</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000120</td>
<td>MCH155A390J 39pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C503</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0017601</td>
<td>CL05A47SMQ5NRNC 4.7uF 20% 6.3V X5R -55TO+85C 1005 R/TP 0.5MM SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ZD501</td>
<td>Diode, TVS</td>
<td>EDTY0009601</td>
<td>Rclamp0521P, TCT 5V 6 5V 4A 100W - R/TP 2P 1 SEMTECH CORPORATION</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>S500</td>
<td>Card Socket</td>
<td>ENSY0022801</td>
<td>49619-1611 169619-1611, 16, ANGLE mm HANKOOK MOLEX</td>
<td></td>
</tr>
</tbody>
</table>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC.
<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>R500,R501</td>
<td>Wire Pad, Short</td>
<td>SAFP0000501</td>
<td>LG-VS760 VRZ</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VA500, VA501</td>
<td>Varistor</td>
<td>SEVY0005201</td>
<td>EVLCS502050 5.5V 0% 50F 1.0"*0.5"*0.6 - SMD R/TP AMOTECH CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SAJD00</td>
<td>PCB Assembly, Sub, SMT Top</td>
<td>SAJD0044201翻译</td>
<td>2</td>
<td>LG-A165 INDKV SUB 1.0</td>
</tr>
<tr>
<td>8</td>
<td>C502</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0004904</td>
<td>GRM155R60J105K 1uF 10% 6.3V X5R -55TO+85C 1005 R/TP - MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CN500</td>
<td>Connector, BtoB</td>
<td>ENBY0039601</td>
<td>GB042-20S-H10-E3000 20P 0.4MM STRAIGHT SOCKET SMD R/TP 1M - LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SPJY00</td>
<td>PCB, Sub</td>
<td>SPJY0086501</td>
<td>SPJY0086501 FR-4 Multi MULTI-2 - LG-A165 INDKV, SUB, D, FR-4mm, MULTI-2 UNITECH PRINTED CIRCUIT BOARD CORP.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SUMY00</td>
<td>Microphone, Condenser</td>
<td>SUMY0003815</td>
<td>B4010AL443-49 -44DB 2.2KOHM OMNI 1.1TO10V 4x1.0t FPCB GoerTek Inc.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SVLM00</td>
<td>LCD Module</td>
<td>SVLM0031401</td>
<td>GPM945A0, Main, 2.0 176220, 37.553.4*1.9, 262K, TFT, TM, L9225 GIANTPLUS TECHNOLOGY CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAFF00</td>
<td>PCB Assembly, Main, SMT</td>
<td>SAFF0295701翻译</td>
<td>3</td>
<td>LG-A155 INDGG MAIN, B</td>
</tr>
<tr>
<td>5</td>
<td>SAFC00</td>
<td>PCB Assembly, Main, SMT Bottom</td>
<td>SAFC0160401=100</td>
<td>100</td>
<td>LG-A155 MAIN E</td>
</tr>
<tr>
<td>6</td>
<td>C327, C334</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000107</td>
<td>MCH155A060DK 6pF 0.25PF 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C307, C308</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000108</td>
<td>MCH155A070DK 7pF 0.25PF 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C241</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000110</td>
<td>MCH155A100D 10pF 0.25PF 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C101, C322, C332</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000115</td>
<td>MCH155A220JK 22pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C120, C124, C125, C152, C153, C404</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000116</td>
<td>C1025C270JBSNNNC 27pF 5% 50V NPO -55TO+125C 1005 R/TP 0.5 SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C213, C218, C220, C226, C227, C234, C235, C405, C408</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000120</td>
<td>C2135C270JB5NNNC 27pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C120, C121, C124, C125, C152, C153</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000122</td>
<td>C1215C270JB5NNNC 27pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C219, C256, C257, C264, C303, C304, C319</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000143</td>
<td>C2195C270JB5NNNC 27pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C207, C208</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000149</td>
<td>C2075C270JB5NNNC 27pF 5% 50V NPO -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Location No.</td>
<td>Description</td>
<td>Part Number</td>
<td>Spec</td>
<td>Remark</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>C312,C322</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000180</td>
<td>GRM1555C1H3R3C 3.3pF 0.25PF 50V NP0 -55TO+125C 1005 R/TP - MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C314,C342</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000182</td>
<td>GRM155R61A104K 0.1uF 10% 10V X5R -55TO+85C 1005 R/TP - MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C301,C302,C328, C330</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000185</td>
<td>GRM1555C1H5R6C 5.6pF 0.25PF 50V NP0 -55TO+125C 1005 R/TP - MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C210,C214, C239,C266</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0000198</td>
<td>CL05A25M05NSNC 2.2uF 20% 6.3V X5R -55TO+85C 1005 R/TP - SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C222</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0002001</td>
<td>C1005JB0104KT000F 0.1uF 10% 6.3V V5P -30TO+85C 1005 R/TP - TDK CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C112,C116, C134,C135, C215,C216, C217,C220, C221, C230,C231, C232,C233, C244,C245, C306,C313, C323,C340</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0004904</td>
<td>GRM155R60J105K 1uF 10% 6.3V X5R -55TO+85C 1005 R/TP - MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C104,C136, C326,C403</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0005604</td>
<td>GRM188R60J106M 1000000 pF 6.3V M.X5R.TC, 1608 R/TP 0.8 mm MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C341,C343, C410,C413, C423</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH0007804</td>
<td>CLO5A225MP5NSNC 2.2uF 20% 10V X5R -55TO+85C 1005 R/TP 0.5MM SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C103,C139, C225</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECCH017601</td>
<td>CLO5A475MG35RNC 4.7uF 20% 6.3V X5R -55TO+85C 1005 R/TP 0.5MM SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C407</td>
<td>Capacitor, TA, Conformal</td>
<td>ECTH0002703</td>
<td>TCTAL1A107M8R 0.0001F 20% 10V 50UA -65TO+125C 90OHM 3.2x1.6x1.1 NONE SMD R/TP ROHM CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C336</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000801</td>
<td>C1005CG1H221JT000F 220pF 5% 16V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C310,C317, C318</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000802</td>
<td>C1005CG1H010CT 1pF 0.25PF 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C350</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000803</td>
<td>C1005CG1H020CT000F 2pF 0.25PF 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C347</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000813</td>
<td>C1005CG1H101JT 100pF 5% 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C311</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000816</td>
<td>C1005CG1H120JT000F 12pF 5% 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C309</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000822</td>
<td>C1005CG1H1R5CT000F 1.5pF 0.25PF 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C209,C315, C329,C345, C346,C415, C416,C417, C418</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZH0000830</td>
<td>C1005CG1H330JT000F 33pF 5% 50V NP0 -55TO+125C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C105,C113, C137,C138, C140,C141, C142,C145, C146,C147, C149,C151, C204,C261, C263,C401, C402,C411, C412,C414, C457</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZI0001215</td>
<td>C1005X5R1A105KT000F 1uF 10% 10V X5R -55TO+85C 1005 R/TP - TDK KOREA COOPERATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C117,C148, C212,C242, C419,C420</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZI0003103</td>
<td>GRM36X7R104K10PT 100nF 10% 10V X7R -55TO+125C 1005 R/TP - MURATA MANUFACTURING CO.,LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C223</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZI0003503</td>
<td>GRM188R61E105K 1uF 10% 25V X5R -55TO+85C 1608 R/TP - MURATA MANUFACTURING CO.,LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C106,C107, C108,C109, C110,C115</td>
<td>Capacitor, Ceramic, Chip</td>
<td>ECZI0004402</td>
<td>MCH153C104ZK 0.1uF 10% 16V NP0 -55TO+125C 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ZD401</td>
<td>Diode, Zener</td>
<td>EDNY0013602</td>
<td>Edzte615.1B EDZTE615.1B, EMD2 5.1V, 150mW, R/TP , ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D403</td>
<td>Diode, Switching</td>
<td>EDSY0014001</td>
<td>KDSZ21E-RTK 1.1V 200mA 300mA 0SEC 100mW ESM R/TP 3P 2 KEC CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ZD301</td>
<td>Diode, TVS</td>
<td>EDTY0009601</td>
<td>Rclamp0521P.TCT 5V 5V 4A 100W - R/TP 2P 1 SEMTECH CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L300,L301</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001048</td>
<td>100SGC210NJLF 10NH 5% 0V 250mA 0.42OHM 2.5GHZ 8 NON SHIELD 1 1.0X0.5X0.5MM R/TP PILKOR ELECTRONICS LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L311,L320</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001049</td>
<td>100SGC265NJLF 6.8NH 5% 0V 250mA 0.32OHM 3GHZ 8 NON SHIELD 1 1.0X0.5X0.5MM R/TP PILKOR ELECTRONICS LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L303</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001052</td>
<td>100SGC218NJLF 18NH 5% 0V 200mA 0.65OHM 1.6GHZ 8 NON SHIELD 1 1.0X0.5X0.5MM R/TP PILKOR ELECTRONICS LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L305</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001401</td>
<td>L1005-FH115NU 15NH 5% 0V 300mA 0.50OHM 2.5GHZ 9 NON SHIELD 1 1.0X0.5X0.5MM R/TP TOKO, INC.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L321</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001411</td>
<td>L1005-FH1N2S 1.2NH 0.3NH 0V 500mA 0.10HM 16GHZ 8 NON SHIELD 1 1.0X0.5X0.5MM R/TP TOKO, INC.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L319</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001413</td>
<td>L1005-FH122NJ 22NH 5% 0V 300mA 0.70HM 2.1GHZ 10 NON SHIELD 1 1.0X0.5X0.5MM R/TP TOKO, INC.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L201</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0001556</td>
<td>L1608-FSLR27J LL1608-FSR27J 270 nH,J ,1608_R/TP , TOKO, INC.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L306,L307, L308,L309</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0003828</td>
<td>LGQ195S2NS02D 2.4NH 0.3NH 0V 300mA 0.15OHM 6GHZ 8 NON SHIELD 1 1X0.5X0.5MM R/TP MURATA MANUFACTURING CO.,LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L202</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCHI0012501</td>
<td>LWQ15AN27NG00D 27NH 2% 0V 280mA 0.50OHM 3.5GHZ 25 NON SHIELD 1 1.0X0.5X0.5MM R/TP MURATA MANUFACTURING CO.,LTD.</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>L315</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCH0012502</td>
<td>LQW15AN10NG00D 10NH 2% - 500mA 0.17OHM 5.5KHZ - NON SHIELD 1 1.0X0.5X0.55MM R/TP MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L310</td>
<td>Inductor, Multilayer, Chip</td>
<td>ELCH0025601</td>
<td>LQW18AN39NG0 39NH 2% - 400mA 0.26OHM 2.8GHZ - NON SHIELD 0 1.6X0.8X0.8MM R/TP MURATA MANUFACTURING CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L101</td>
<td>Inductor, Wire Wound, Chip</td>
<td>ELCP0008017</td>
<td>CIG21L2R2MNE 2.2UH 30% - 1.3A 0.08OHM - SHIELD 2X1.25X1MM NONE - SAMSUNG ELECTRO-MECHANICS CO., LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CN101</td>
<td>Connector, BtoB</td>
<td>ENBY0029001</td>
<td>AXT430164 30P 0.40MM STRAIGHT HEADER SMD R/TP 1.5M - Panasonic Corporation</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CN200</td>
<td>Connector, BtoB</td>
<td>ENBY0039601</td>
<td>GB042-20S-H10-E3000 20P 0.4MM STRAIGHT SOCKET SMD R/TP 1M - LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CN401</td>
<td>Connector, FFC/FPC/PIC</td>
<td>ENQY0014901</td>
<td>GF032-3SS-E2000 35P 0.30MM FFC STRAIGHT BOTH SMD R/TP LOCKING - LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CN202</td>
<td>Connector, I/O</td>
<td>ENRY0008801</td>
<td>GU073-5P-SD-E1500 GU073-5P-SD-E1500, 5,mm, ANGLE LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J201</td>
<td>Card Socket</td>
<td>ENSY0025101</td>
<td>GCA26D-6S-H18-E1500 SIM 6P ANGLE SMD R/TP - LS Mtron Ltd.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SW301</td>
<td>Connector, RF</td>
<td>ENWY0008701</td>
<td>MS-15C NONE STRAIGHT SOCKET SMD T/REEL AU 500OHM 400mDB HIROSE KOREA CO., LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Q400</td>
<td>TR, Bipolar</td>
<td>EQBN0007101</td>
<td>2SC5585 NPN 6V 15V 12U 500mA 100mA 680 150mW EMT3 R/TP 3P - ROHM.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R108</td>
<td>Resistor, Chip</td>
<td>ERHY0000105</td>
<td>MCR01MZP5F51R0 51OHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R313</td>
<td>Resistor, Chip</td>
<td>ERHY0000128</td>
<td>MCR01MZP5F1502 15KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R301</td>
<td>Resistor, Chip</td>
<td>ERHY0000129</td>
<td>MCR01MZP5F1802 18KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R209</td>
<td>Resistor, Chip</td>
<td>ERHY0000185</td>
<td>MCR01MZP5F8200 820OHM 1% 1/16W 1005 R/TP - ROHM.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R302, R402, R414</td>
<td>Resistor, Chip</td>
<td>ERHY0000241</td>
<td>MCR01MZP5J102 1KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R206, R411, R412</td>
<td>Resistor, Chip</td>
<td>ERHY0000301</td>
<td>MCR01MZP5J101 100OHM 5% 1/16W 1005 R/TP - ROHM.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R415, R417, R420</td>
<td>Resistor, Chip</td>
<td>ERHZ0000204</td>
<td>MCR01MZP5F1003 100KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R229</td>
<td>Resistor, Chip</td>
<td>ERHZ0000243</td>
<td>MCR01MZP5F2201 2.2KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R208</td>
<td>Resistor, Chip</td>
<td>ERHZ0000264</td>
<td>MCR01MZP5F3001 3000 ohm, 1/16W, F, 1005R/TP ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R117</td>
<td>Resistor, Chip</td>
<td>ERHZ0000294</td>
<td>MCR01MZP5F5101 5.1KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R320</td>
<td>Resistor, Chip</td>
<td>ERHZ0000295</td>
<td>MCR01MZP5F5102 51KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>R204</td>
<td>Resistor,Chip</td>
<td>ERHZ0000404</td>
<td>MCR01MZP5J102 1KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R239,R306, R319</td>
<td>Resistor,Chip</td>
<td>ERHZ0000405</td>
<td>MCR01MZP5J103 10KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R102,R103, R104,R119, R129,R205, R211,R222, R236,R303, R304,R307, R324,R401, R403,R405, R406</td>
<td>Resistor,Chip</td>
<td>ERHZ0000406</td>
<td>MCR01MZP5J104 100KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R321</td>
<td>Resistor,Chip</td>
<td>ERHZ0000434</td>
<td>MCR01MZP5J1R0 1OHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R123,R124, R130,R131, R207,R215, R413,R418</td>
<td>Resistor,Chip</td>
<td>ERHZ0000443</td>
<td>MCR01MZP5J222 2.2KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R213</td>
<td>Resistor,Chip</td>
<td>ERHZ0000486</td>
<td>MCR01MZP5J473 47KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R407,R408</td>
<td>Resistor,Chip</td>
<td>ERHZ0000488</td>
<td>MCR01MZP5J4R7 4.7KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R120</td>
<td>Resistor,Chip</td>
<td>ERHZ0000499</td>
<td>MCR01MZP5J652 5.6KOHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R419</td>
<td>Resistor,Chip</td>
<td>ERHZ0000537</td>
<td>MCR01MZP5F6803 680KOHM 1% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R416</td>
<td>Resistor,Chip</td>
<td>ERHZ0000702</td>
<td>MCR03EZP5J100 100OHM 5% 1/16W 1005 R/TP - ROHM Semiconductor KOREA CORPORATION</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U400</td>
<td>IC,Charge Pump</td>
<td>EUSY0344402</td>
<td>RT9367C QFN,20,R/TP,4CH,2LDO,3X3,IC,Sub PMIC;Sub PMIC RICHTEK TECHNOLOGY CORP.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U202</td>
<td>IC,Analog Switch</td>
<td>EUSY0347001</td>
<td>DG2735DN-T1-E4 MiniQFN-10L .10 PIN,R/TP .1.8X1.4X0.55,0.6 Dual SPDT Analog Switch .; IC,Analog Switch VISHAY INTERTECHNOLOGY ASIA PTE LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U101</td>
<td>IC,MCP,NOR</td>
<td>EUSY0368505</td>
<td>PF63F9050M0Y3DE NOR/256MBIT + PSRAM/64MBIT 1.7VTO1.9V 668691.0 TR 56P - - - Numonyx Asia Pacific Pte Ltd.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U302</td>
<td>IC,Bluetooth</td>
<td>EUSY0395001</td>
<td>MT6612 3VTO4.8V 108.9mW QFN R/TP 40P - MEDIATEK INC.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U102</td>
<td>IC,Digital Signal Processors</td>
<td>EUSY0409701</td>
<td>MT6253 0 0 0 NONE NONE BGA R/TP 263P - MEDIATEK SINGAPORE PTE,LTD.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U201</td>
<td>IC,Voltage Reference</td>
<td>EUSY0410801</td>
<td>RT9524 DFN,1G,R/TP DFN Cal Test Mode Single Charger IC for Micro USB,IC,ChargerIC,Charger RICHTEK TECHNOLOGY CORP.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M200</td>
<td>IC,Audio Sub System</td>
<td>EUSY0420001</td>
<td>TPA2055S3T 1.6~5.5V 0W WLCSO R/TP 20P - TEXAS INSTRUMENTS INCO.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U301</td>
<td>IC,Tuner</td>
<td>EUSY0430601</td>
<td>Si4704-D50-GMR QFN .20 ,R/TP ,FM Tuner(No RDS),Internal FM Ant,330.6,110mm,0.5p ; ; IC,Tuner SILICON LABORATORIES</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>IC200</td>
<td>IC, Analog Switch</td>
<td>EUSY0434001</td>
<td>RT89688WSL WLCSP .20 .R/TP, WLCSP .20 .R/TP , RICHTEK TECHNOLOGY CORP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X101</td>
<td>Crystal</td>
<td>EXXY0018701</td>
<td>FC-135(12.5PF, +20PPM) 32.768KHZ 20PPM 12.5PF 32'15 SMD R/TP SEIKO EPSON CORP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X102</td>
<td>Crystal</td>
<td>EXXY0027401</td>
<td>X1E00020143400 26MHZ 10PPM 0F NONE SMD R/TP EPSON TOYOCOM CORP</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R101,R125, R201,R203, R305,R308, R309,R410</td>
<td>Wire Pad, Short</td>
<td>SAFP0000501</td>
<td>LG-VS760 VRZ</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VA401, VA402</td>
<td>Varistor</td>
<td>SEVY0005402</td>
<td>ICVS0505500FR 5.6V 0% 50F 1.0"*0.5"*0.55 - SMD R/TP INNOCHIPS TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB203</td>
<td>Filter, Bead</td>
<td>SFBH0007101</td>
<td>BLM15AG121PN1 120ohm 1.0x0.5x0.05 SMD R/TP 2P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB103</td>
<td>Filter, Bead</td>
<td>SFBH0007103</td>
<td>BLM15BB50SN1J 75ohm 1.0x0.5x0.55 SMD R/TP 2P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB105, FB207, FB208</td>
<td>Filter, Bead</td>
<td>SFBH0008101</td>
<td>BLM15AG601SN1 600ohm 1.0x0.5x0.55 SMD R/TP 2P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB104</td>
<td>Filter, Bead</td>
<td>SFBH0008103</td>
<td>BLM15BD102SN1 1000 1.0x0.5x0.05 SMD R/TP 2P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FB101, FB102, FB201, FB202</td>
<td>Filter, Bead</td>
<td>SFBH0008105</td>
<td>BLM15BD182SN1D 1800ohm 1.0x0.5x0.55 SMD R/TP 2P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL304</td>
<td>Filter, Dielectric</td>
<td>SFDY0002601</td>
<td>LFB212G45BA1A220 BPF 2.45KHZ 100 SMD R/TP - MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL400, FL401, FL402</td>
<td>Filter, EMI/Power</td>
<td>SFEY0010501</td>
<td>ICVE10184E150R101FR ESD/EMI 0HZ 15pF 0H SMD R/TP INNOCHIPS TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL301</td>
<td>Filter, Saw</td>
<td>SFSY0024301</td>
<td>SAFEB942MFL0F00 942.5 1.41.00.6 SMD R/TP 5P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL302</td>
<td>Filter, Saw</td>
<td>SFSY0023402</td>
<td>SAFEB1G84A0F00 1842.5 1.41.00.6 SMD R/TP 5P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL303</td>
<td>Filter, Saw</td>
<td>SFSY0024303</td>
<td>SAFEB1G96A0F00 1960 1.41.00.6 SMD R/TP 5P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FL305</td>
<td>Filter, Saw</td>
<td>SFSY0030003</td>
<td>SAFEB881MFL0F55 881.5MHz 1.41.10.6 SMD R/TP 5P MURATA MANUFACTURING CO.,LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>U303</td>
<td>RF Module</td>
<td>SMRH0005601</td>
<td>SKY77547 MHz,MHz,GSM Quad Tx Module 6x8, SKYWORKS SOLUTIONS INC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BAT101</td>
<td>Module, Assembly</td>
<td>SMZY0026701</td>
<td>EECEP0F333YD GM750 SPFRTN Backup Capacitor,0.03F,3.8pi,Module Assembly PANASONIC INDUSTRIAL KOREA CO., LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ANT303</td>
<td>Antenna, Helical</td>
<td>SNMF0051501</td>
<td>SDBTRTR3015 SINGLE -SDB 50OHM 5 PARTRON COMPANY LIMITED</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SAFD00</td>
<td>PCB Assembly, Main,SMT Top</td>
<td>SAFD0157601 = 2</td>
<td>LG-A155 INDGG MAIN,B</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>LD400, LD401</td>
<td>LED, Chip</td>
<td>EDLH0013401</td>
<td>SWAA07 WHITE 3.03.2 20mA 12001400mcd 0.285~0.31 120mW 1005 R/TP 2P - SEOUL SEMICONDUCTOR CO., LTD</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SPFY</td>
<td>PCB, Main</td>
<td>SPFY0236101</td>
<td>SPFY0236101 FR-4 Multi MULTI-6 0.8 mm, MULTI-6 UNITECH PRINTED CIRCUIT BOARD CORP.</td>
<td></td>
</tr>
</tbody>
</table>
12. EXPLODED VIEW & REPLACEMENT PART LIST

12.3 Accessory

<table>
<thead>
<tr>
<th>Level</th>
<th>Location No.</th>
<th>Description</th>
<th>Part Number</th>
<th>Spec</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SBPL00</td>
<td>Mobile Phone Battery Li-ion</td>
<td>SBPL0090501</td>
<td>KU250-553450-LGC-EU KU250-553450-LGC-EU,3.7 V,950mAh,1 CELL,PRISMATIC, KU250 Europe BATT, IP, Pb-Free LG CHEMICAL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SGEY000000</td>
<td>Earphone, Stereo</td>
<td>SGEY0003218</td>
<td>EMB-LGE011STKC 3mW 180OHM 115DB 85HZTO126HZ 1M BLACK SPIN 5 CRESYN CO., LTD</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EAY000000</td>
<td>Adapters SSSAD0032601</td>
<td>SSAD0032601</td>
<td>STA-U34ID STA-U34ID,100-240V,5060 Hz,5.1 V,0.7 A,CE,AC-DC ADAPTOR DONG DO ELECTRONICS CO., LTD</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EAY000000</td>
<td>Adapters SSSAD0032602</td>
<td>SSSAD0032602</td>
<td>STA-U34IV 150Vac~350Vac 5.1V 700mA 5060 CE NONE NONE - Power Systems Technologies Far East Ltd</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EAY000000</td>
<td>Adapters SSSAD0032603</td>
<td>SSSAD0032603</td>
<td>STA-U34IS 100-240V,5060 Hz,5.1 V,0.7 A,CE,AC-DC ADAPTOR,150Vac350Vac,4.75Vdc5.25Vdc,700mA,5060 ,WALL 2P,USB,5060,WALL 2P,USB, SUNLIN ELECTRONICS CO., LTD</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EAY000000</td>
<td>Adapters SSSAD0032604</td>
<td>SSSAD0032604</td>
<td>STA-U34IR 100-240V,5060 Hz,5.1 V,0.7 A,CE,AC-DC ADAPTOR,150Vac350Vac,4.75Vdc5.25Vdc,700mA,5060 ,WALL 2P,USB,5060,WALL 2P,USB, SALCOMP OY</td>
<td></td>
</tr>
</tbody>
</table>