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EXCERPTS FROM THE PREFACES TO THE 

FIRST AND SECOND EDITIONS 

This book is devoted to the presentation of the theory of the electromagnetic and gravitational 

fields, i.e. electrodynamics and general relativity. A complete, logically connected theory of 

the electromagnetic field includes the special theory of relativity, so the latter has been taken 

as the basis of the presentation. As the starting point of the derivation of the fundamental 

relations we take the variational principles, which make possible the attainment of maximum 

generality, unity and simplicity of presentation. 
In accordance with the overall plan of our Course of Theoretical Physics (of which this 

book is a part), we have not considered questions concerning the electrodynamics of continuous 

media, but restricted the discussion to “microscopic electrodynamics”—the electrodynamics 

of point charges in vacuo. 
The reader is assumed to be familiar with electromagnetic phenomena as discussed in 

general physics courses. A knowledge of vector analysis is also necessary. The reader is not 

assumed to have any previous knowledge of tensor analysis, which is presented in parallel 

with the development of the theory of gravitational fields. 

Moscow, December 1939 

Moscow, June 1947 
L. Landau, E. Lifshitz 



PREFACE TO THE FOURTH ENGLISH EDITION 

The first edition of this book appeared more than thirty years ago. In the course of reissues 

over these decades the book has been revised and expanded; its volume has almost doubled 

since the first edition. But at no time has there been any need to change the method proposed 

by Landau for developing the theory, or his style of presentation, whose main feature was 

a striving for clarity and simplicity. I have made every effort to preserve this style in the 
revisions that I have had to make on my own. 

As compared with the preceding edition, the first nine chapters, devoted to electrodynamics, 

have remained almost without changes. The chapters concerning the theory of the gravitational 

field have been revised and expanded. The material in these chapters has increased from 

edition to edition, and it was finally necessary to redistribute and rearrange it. 

I should like to express here my deep gratitude to all of my helpers in this work—too 

many to be enumerated—who, by their comments and advice, helped me to eliminate errors 

and introduce improvements. Without their advice, without the willingness to help which 

has met all my requests, the work to continue the editions of this course would have been 

much more difficult. A special debt of gratitude is due to L. P. Pitaevskii, with whom I have 
constantly discussed all the vexing questions. 

The English translation of the book was done from the last Russian edition, which appeared 

in 1973. No further changes in the book have been made. The 1994 corrected reprint 

includes the changes made by E. M. Lifshitz in the Seventh Russian Edition published in 
1987. 

I should also like to use this occasion to sincerely thank Prof. Hamermesh, who has 

translated this book in all its editions, starting with the first English edition in 1951. The 

success of this book among English-speaking readers is to a large extent the result of his 
labour and careful attention. 

E. M. Lifshitz 

PUBLISHER’S NOTE 

As with the other volumes in the Course of Theoretical Physics, the authors do not, as a rule, 

give references to original papers, but simply name their authors (with dates). Full bibliographic 

references are only given to works which contain matters not fully expounded in the text. 



EDITOR’S PREFACE TO THE 

SEVENTH RUSSIAN EDITION 

E. M. Lifshitz began to prepare a new edition of Teoria Polia in 1985 and continued his 

work on it even in hospital during the period of his last illness. The changes that he proposed 

are made in the present edition. Of these we should mention some revision of the proof of 

the law of conservation of angular momentum in relativistic mechanics, and also a more 

detailed discussion of the question of symmetry of the Christoffel symbols in the theory of 

gravitation. The sign has been changed in the definition of the electromagnetic field stress 

tensor. (In the present edition this tensor was defined differently than in the other volumes 

of the Course.) 

June 1987 L. P. Pitaevskii 



NOTATION 

Three-dimensional quantities 

Three-dimensional tensor indices are denoted by Greek letters 

Element of volume, area and length: dV, df, d\ 

Momentum and energy of a particle: p and d 

Hamiltonian function: 3f 
Scalar and vector potentials of the electromagnetic field: <j) and A 

Electric and magnetic field intensities: E and H 

Charge and current density: p and j 

Electric dipole moment: d 
Magnetic dipole moment: «. 

Four-dimensional quantities 

Four-dimensional tensor indices are denoted by Latin letters i, k,l,... and take on the values 

0, 1, 2, 3 

We use the metric with signature (+-) 

Rule for raising and lowering indices—see p. 14 o 

Components of four-vectors are enumerated in the form A' = (A , A) 

Antisymmetric unit tensor of rank four is eMm, where e0123 = 1 (for the definition, see p. 17) 

Element of four-volume dQ. = dx°dxidx1(hc' 

Element of hypersurface dS‘ (defined on pp. 20-21) 

Radius four-vector: xl = (ct, r) 

Velocity four-vector: u‘ = dx'/ds 

Momentum four-vector: p = (die, p) 

Current four-vector: j‘ = (cp, pv) 

Four-potential of the electromagnetic field: A1 = (<p. A) 

Electromagnetic field four-tensor Fik = -=A- - (for the relation of the components of 

Flk to the components of E and H, see p. 65) 
Energy-momentum four-tensor F'^for the definition of its components, see p. 83) 



CHAPTER 1 

THE PRINCIPLE OF RELATIVITY 

§ 1. Velocity of propagation of interaction 

For the description of processes taking place in nature, one must have a system of reference. 

By a system of reference we understand a system of coordinates serving to indicate the 

position of a particle in space, as well as clocks fixed in this system serving to indicate the 

time. 
There exist systems of reference in which a freely moving body, i.e. a moving body which 

is not acted upon by external forces, proceeds with constant velocity. Such reference systems 

are said to be inertial. 
If two reference systems move uniformly relative to each other, and if one of them is an 

inertial system, then clearly the other is also inertial (in this system too every free motion 

will be linear and uniform). In this way one can obtain arbitrarily many inertial systems of 

reference, moving uniformly relative to one another. 

Experiment shows that the so-called principle of relativity is valid. According to this 

principle all the laws of nature are identical in all inertial systems of reference. In other 

words, the equations expressing the laws of nature are invariant with respect to transformations 

of coordinates and time from one inertial system to another. This means that the equation 

describing any law of nature, when written in terms of coordinates and time in different 

inertial reference systems, has one and the same form. 

The interaction of material particles is described in ordinary mechanics by means of a 

potential energy of interaction, which appears as a function of the coordinates of the interacting 

particles. It is easy to see that this manner of describing interactions contains the assumption 

of instantaneous propagation of interactions. For the forces exerted on each of the particles 

by the other particles at a particular instant of time depend, according to this description, 

only on the positions of the particles at this one instant. A change in the position of any of 

the interacting particles influences the other particles immediately. 

However, experiment shows that instantaneous interactions do not exist in nature. Thus a 

mechanics based on the assumption of instantaneous propagation of interactions contains 

within itself a certain inaccuracy. In actuality, if any change takes place in one of the 

interacting bodies, it will influence the other bodies only after the lapse of a certain interval 

of time. It is only after this time interval that processes caused by the initial change begin 

to take place in the second body. Dividing the distance between the two bodies by this time 

interval, we obtain the velocity of propagation of the interaction. 

We note that this velocity should, strictly speaking, be called the maximum velocity of 

propagation of interaction. It determines only that interval of time after which a change 

occurring in one body begins to manifest itself in another. It is clear that the existence of a 
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maximum velocity of propagation of interactions implies, at the same time, that motions of 

bodies with greater velocity than this are in general impossible in nature. For if such a 

motion could occur, then by means of it one could realize an interaction with a velocity 

exceeding the maximum possible velocity of propagation of interactions. 

Interactions propagating from one particle to another are frequently called “signals”, sent 

out from the first particle and “informing” the second particle of changes which the first has 

experienced. The velocity of propagation of interaction is then referred to as the signal 

velocity. 

From the principle of relativity it follows in particular that the velocity of propagation of 

interactions is the same in all inertial systems of reference. Thus the velocity of propagation 

of interactions is a universal constant. This constant velocity (as we shall show later) is also 

the velocity of light in empty space. The velocity of light is usually designated by the letter 

c, and its numerical value is 

c = 2.998 x 1010 cm/sec. (1.1) 

The large value of this velocity explains the fact that in practice classical mechanics 

appears to be sufficiently accurate in most cases. The velocities with which we have occasion 

to deal are usually so small compared with the velocity of light that the assumption that the 

latter is infinite does not materially affect the accuracy of the results. 

The combination of the principle of relativity with the finiteness of the velocity of propagation 

of interactions is called the principle of relativity of Einstein (it was formulated by Einstein 

in 1905) in contrast to the principle of relativity of Galileo, which was based on an infinite 

velocity of propagation of interactions. 

The mechanics based on the Einsteinian principle of relativity (we shall usually refer to it 

simply as the principle of relativity) is called relativistic. In the limiting case when the 

velocities of the moving bodies are small compared with the velocity of light we can neglect 

the effect on the motion of the finiteness of the velocity of propagation. Then relativistic 

mechanics goes over into the usual mechanics, based on the assumption of instantaneous 

propagation of interactions; this mechanics is called Newtonian or classical. The limiting 

transition from relativistic to classical mechanics can be produced formally by the transition 

to the limit c -» °° in the formulas of relativistic mechanics. 

In classical mechanics distance is already relative, i.e. the spatial relations between different 

events depend on the system of reference in which they are described. The statement that 

two nonsimultaneous events occur at one and the same point in space or, in general, at a 

definite distance from each other, acquires a meaning only when we indicate the system of 

reference which is used. 

On the other hand, time is absolute in classical mechanics; in other words, the properties 

of time are assumed to be independent of the system of reference; there is one time for all 

reference frames. This means that if any two phenomena occur simultaneously for any one 

observer, then they occur simultaneously also for all others. In general, the interval of time 

between two given events must be identical for all systems of reference. 

It is easy to show, however, that the idea of an absolute time is in complete contradiction 

to the Einstein principle of relativity. For this it is sufficient to recall that in classical mechanics, 

based on the concept of an absolute time, a general law of combination of velocities is valid, 

according to which the velocity of a composite motion is simply equal to the (vector) sum 

of the velocities which constitute this motion. This law, being universal, should also be 

applicable to the propagation of interactions. From this it would follow that the velocity of 
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propagation must be different in different inertial systems of reference, in contradiction to 

the principle of relativity. In this matter experiment completely confirms the principle of 

relativity. Measurements first performed by Michelson (1881) showed complete lack of 

dependence of the velocity of light on its direction of propagation; whereas according to 

classical mechanics the velocity of light should be smaller in the direction of the earth’s 

motion than in the opposite direction. 

Thus the principle of relativity leads to the result that time is not absolute. Time elapses 

differently in different systems of reference. Consequently the statement that a definite time 

interval has elapsed between two given events acquires meaning only when the reference 

frame to which this statement applies is indicated. In particular, events which are simultaneous 

in one reference frame will not be simultaneous in other frames. 

To clarify this, it is instructive to consider the following simple example. 

Let us look at two inertial reference systems K and K' with coordinate axes XYZ and 

X' Y' Z' respectively, where the system K' moves relative to K along the X(X') axis (Fig. 1). 

Z Z' 

Suppose signals start out from some point A on the X’ axis in two opposite directions. 

Since the velocity of propagation of a signal in the K' system, as in all inertial systems, is 

equal (for both directions) to c, the signals will reach points B and C, equidistant from A, at 

one and the same time (in the K' system) 

But it is easy to see that the same two events (arrival of the signal at B and C) can by no 

means be simultaneous for an observer in the K system. In fact, the velocity of a signal 

relative to the K system has, according to the principle of relativity, the same value c, and 

since the point B moves (relative to the K system) toward the source of its signal, while the 

point C moves in the direction away from the signal (sent from A to C), in the K system the 

signal will reach point B earlier than point C. 

Thus the principle of relativity of Einstein introduces very drastic and fundamental changes 

in basic physical concepts. The notions of space and time derived by us from our daily 

experiences are only approximations linked to the fact that in daily life we happen to deal 

only with velocities which are very small compared with the velocity of light. 

§ 2. Intervals 

In what follows we shall frequently use the concept of an event. An event is described by 

the place where it occurred and the time when it occurred. Thus an event occurring in a 

certain material particle is defined by the three coordinates of that particle and the time when 

the event occurs. 
It is frequently useful for reasons of presentation to use a fictitious four-dimensional 



THE PRINCIPLE OF RELATIVITY § 2 

space, on the axes of which are marked three space coordinates and the time. In this space 

events are represented by points, called world points. In this fictitious four-dimensional 

space there corresponds to each particle a cetain line, called a world line. The points of this 

line determine the coordinates of the particle at all moments of time. It is easy to show that 

to a particle in uniform rectilinear motion there corresponds a straight world line. 

We now express the principle of the invariance of the velocity of light in mathematical 

form. For this purpose we consider two reference systems K and K' moving relative to each 

other with constant velocity. We choose the coordinate axes so that the axes X and X' 

coincide, while the Y and Z axes are parallel to Y and Z'; we designate the time in the 

systems K and K' by t and t’. 

Let the first event consist of sending out a signal, propagating with light velocity, from a 

point having coordinates x^y^zi in the K system, at time q in this system. We observe the 

propagation of this signal in the K system. Let the second event consist of the arrival of the 

signal at point x2y2z2 at the moment of time t2. The signal propagates with velocity c; 

the distance covered by it is therefore c(t\ -12). On the other hand, this same distance equals 

l(x2 - x,)2 + (y2 - V|)2 + (z.2 - Z\ )2 ]2 - Thus we can write the following relation between the 

coordinates of the two events in the K system: 

to - *i)2 + to - yO2 + to - Zi)2 - c2(h - hf = 0. (2.1) 

The same two events, i.e. the propagation of the signal, can be observed from the K’ 

system: 

Let the coordinates of the first event in the K’ system be x[y[z[t[, and of the second: 

x2y2zto • Since the velocity of light is the same in the K and K' systems, we have, similarly 

to (2.1): 

(x2 -x[)2 + (y2 -y{)2 +(£2 - z{)2 - c2(t2 -t[)2 =0. (2.2) 

If Xi V, z.\ t\ and x2y2z.2t2 are the coordinates of any two events, then the quantity 

*12 = [c2to - 'i)2 - to - W)2 - to - yif - (z2 - zi )2 ]* (2-3) 

is called the interval between these two events. 

Thus it follows from the principle of invariance of the velocity of light that if the interval 

between two events is zero in one coordinate system, then it is equal to zero in all other 

systems. 

If two events are infinitely close to each other, then the interval ds between them is 

ds1 - c2dt2 - dx2 - dy2 - dz2. (2.4) 

The form of expressions (2.3) and (2.4) permits us to regard the interval, from the formal 

point of view, as the distance between two points in a fictitious four-dimensional space 

(whose axes are labelled by x, y, z, and the product ct). But there is a basic difference 

between the rule for forming this quantity and the rule in ordinary geometry: in forming the 

square of the interval, the squares of the coordinate differences along the different axes are 

summed, not with the same sign, but rather with varying signs.f 

As already shown, if ds - 0 in one inertial system, then ds' = 0 in any other system. On 

t The four-dimensional geometry described by the quadratic form (2.4) was introduced by H. Minkowski, 
in connection with the theory of relativity. This geometry is called pseudo-euclidean, in contrast to ordinary 
euclidean geometry. 
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the other hand, ds and ds' are infinitesimals of the same order. From these two conditions 

it follows that ds2 and ds'2 must be proportional to each other: 

ds2 = ads'2 

where the coefficient a can depend only on the absolute value of the relative velocity of the 

two inertial systems. It cannot depend on the coordinates or the time, since then different 

points in space and different moments in time would not be equivalent, which would be in 

contradiction to the homogeneity of space and time. Similarly, it cannot depend on the 

direction of the relative velocity, since that would contradict the isotropy of space. 

Let us consider three reference systems K, Ku K2, and let V, and V2 be the velocities of 

systems Kx and K2 relative to K. We then have: 

ds2 = a(V{)ds2, ds2 = a(V2)ds2 . 

Similarly we can write 

ds2 = a(Vn)dsl, 

where Vn is the absolute value of the velocity of K2 relative to Kx. Comparing these 

relations with one another, we find that we must have 

JV2)_ 

«(V.) 
(2.5) 

But Vl2 depends not only on the absolute values of the vectors V, and V2, but also on the 

angle between them. However, this angle does not appear on the left side of formula (2.5). 

It is therefore clear that this formula can be correct only if the function a(V) reduces to a 

constant, which is equal to unity according to this same formula. 

Thus, 

■' ds2 = ds'2. (2.6) 

and from the equality of the infinitesimal intervals there follows the equality of finite 
intervals: s - s'. 

Thus we arrive at a very important result: the interval between two events is the same in 

all inertial systems of reference, i.e. it is invariant under transformation from one inertial 

system to any other. This invariance is the mathematical expression of the constancy of the 

velocity of light. 

Again let A1ylzlf, and x2y2z2t2 be the coordinates of two events in a certain reference 

system K. Does there exist a coordinate system K', in which these two events occur at one 

and the same point in space? 

We introduce the notation 

h - h = hi, (*2 - *1) + (y2 - yif + (z2 - z,)2 = ll\ 

Then the interval between events in the K system is: 

4 = c2t22 - i22 

and in the K' system 

v'2 _ r2,'2 _ i/2 
a12 _ c *12 *12 ’ 

whereupon, because of the invariance of intervals, 
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r2f2 i2 _ r2f'2 f'2 C M2 “ M2 _ C M2 - M2 • 

We want the two events to occur at the same point in the K' system, that is, we require 

l[2 = 0. Then 

4 = c24 - 4 = c24 > o. 

Consequently a system of reference with the required property exists if s22 > 0, that is, if the 

interval between the two events is a real number. Real intervals are said to be timelike. 

Thus, if the interval between two events is timelike, then there exists a system of reference 

in which the two events occur at one and the same place. The time which elapses between 

the two events in this system is 

<2'7> 

If two events occur in one and the same body, then the interval between them is always 

timelike, for the distance which the body moves between the two events cannot be greater 

than ctn, since the velocity of the body cannot exceed c. So we have always 

lu < ct\2- 

Let us now ask whether or not we can find a system of reference in which the two events 

occur at one and the same time. As before, we have for the K and K' systems c2tf2 - 4 = 

- l'i2 - We want to have t[2 - 0, so that 

4 = - 42 < 0- 

Consequently the required system can be found only for the case when the interval sl2 

between the two events is an imaginary number. Imaginary intervals are said to be spacelike. 

Thus if the interval between two events is spacelike, there exists a reference system in 

which the two events occur simultaneously. The distance between the points where the 

events occur in this system is 

l[2 = ^Iy2 - c2tf2 - is\2. (2.8) 

The division of intervals into space- and timelike intervals is, because of their invariance, 

an absolute concept. This means that the timelike or spacelike character of an interval is 

independent of the reference system. 

Let us take some event O as our origin of time and space coordinates. In other words, in 

the four-dimensional system of coordinates, the axes of which are marked x, y, z, t, the world 

point of the event O is the origin of coordinates. Let us now consider what relation other 

events bear to the given event O. For visualization, we shall consider only one space 

dimension and the time, marking them on two axes (Fig. 2). Uniform rectilinear motion of 

a particle, passing through x = 0 at t = 0, is represented by a straight line going through O 

and inclined to the t axis at an angle whose tangent is the velocity of the particle. Since the 

maximum possible velocity is c, there is a maximum angle which this line can subtend with 

the t axis. In Fig. 2 are shown the two lines representing the propagation of two signals (with 

the velocity of light) in opposite directions passing through the event O (i.e. going through 

x = 0 at 1 = 0). All lines representing the motion of particles can lie only in the regions aOc 

and dOb. On the lines ab and cd, x = ± ct. First consider events whose world points lie 

within the region aOc. It is easy to show that for all the points of this region c2t2 - x2 > 0. 
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In other words, the interval between any event in this region and the event O is timelike. In 

this region t > 0, i.e. all the events in this region occur “after” the event O. But two events 

which are separated by a timelike interval cannot occur simultaneously in any reference 

system. Consequently it is impossible to find a reference system in which any of the events 

in region aOc occurred “before” the event O, i.e. at time / < 0. Thus all the events in region 

aOc are future events relative to O in all reference systems. Therefore this region can be 

called the absolute future relative to O. 

Fig. 2 

In exactly the same way, all events in the region bOd are in the absolute past relative to 

0; i.e. events in this region occur before the event O in all systems of reference. 

Next consider regions dOa and cOb. The interval between any event in this region and the 

event 0 is spacelike. These events occur at different points in space in every reference 

system. Therefore these regions can be said to be absolutely remote relative to O. However, 

the concepts “simultaneous”, “earlier”, and “later” are relative for these regions. For any 

event in these regions there exist systems of reference in which it occurs after the event O, 

systems in which it occurs earlier than O, and finally one reference system in which it occurs 

simultaneously with O. 

Note that if we consider all three space coordinates instead of just one, then instead of the 

two intersecting lines of Fig. 2 we would have a “cone” x2 + y2 + z2 - c2t2 = 0 in the four¬ 

dimensional coordinate system x, y, z, t, the axis of the cone coinciding with the t axis. (This 

cone is called the light cone.) The regions of absolute future and absolute past are then 

represented by the two interior portions of this cone. 

Two events can be related causally to each other only if the interval between them is 

timelike; this follows immediately from the fact that no interaction can propagate with a 

velocity greater than the velocity of light. As we have just seen, it is precisely for these 

events that the concepts “earlier” and “later” have an absolute significance, which is a 

necessary condition for the concepts of cause and effect to have meaning. 

§ 3. Proper time 

Suppose that in a certain inertial reference system we observe clocks which are moving 

relative to us in an arbitrary manner. At each different moment of time this motion can be 

considered as uniform. Thus at each moment of time we can introduce a coordinate system 
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rigidly linked to the moving clocks, which with the clocks constitutes an inertial reference 

system. 

In the course of an infinitesimal time interval dt (as read by a clock in our rest frame) the 

moving clocks go a distance sjdx2 + dy2 + dz2 . Let us ask what time interval dt' is 

indicated for this period by the moving clocks. In a system of coordinates linked to the 

moving clocks, the latter are at rest, i.e., dx = dy' = dz' = 0. Because of the invariance of 

intervals 

ds2 = c2dt2 -dx2- dy2 - dz2 = c2dt'2, 

from which 

But 

dx2 + dy2 + dz2 

dx2 + dy2 + dz2 _ ^ 

dt2 ~ V 

where v is the velocity of the moving clocks; therefore 

(3.1) 

Integrating this expression, we can obtain the time interval indicated by the moving clocks 

when the elapsed time according to a clock at rest is t2 - tt: 

n 

t'2 - t[ - J dt 

h 

The time read by a clock moving with a given object is called the proper time for this 

object. Formulas (3.1) and (3.2) express the proper time in terms of the time for a system of 

reference from which the motion is observed. 

As we see from (3.1) or (3.2), the proper time of a moving object is always less than the 

corresponding interval in the rest system. In other words, moving clocks go more slowly 
than those at rest. 

Suppose some clocks are moving in uniform rectilinear motion relative to an inertial 

system K. A reference frame K' linked to the latter is also inertial. Then from the point of 

view of an observer in the K system the clocks in the K' system fall behind. And conversely, 

from the point of view of the K' system, the clocks in K lag. To convince ourselves that there 

is no contradiction, let us note the following. In order to establish that the clocks in the K' 

system lag behind those in the K system, we must proceed in the following fashion. Suppose 

that at a certain moment the clock in K’ passes by the clock in K, and at that moment the 

readings of the two clocks coincide. To compare the rates of the two clocks in K and K' we 

must once more compare the readings of the same moving clock in K' with the clocks in K. 

But now we compare this clock with different clocks in K—with those past which the clock 

in K' goes at ths new time. Then we find that the clock in K' lags behind the clocks in K with 

which it is being compared. We see that to compare the rates of clocks in two reference 

(3.2) 
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frames we require several clocks in one frame and one in the other, and that therefore this 

process is not symmetric with respect to the two systems. The clock that appears to lag is 

always the one which is being compared with different clocks in the other system. 

If we have two clocks, one of which describes a closed path returning to the starting point 

(the position of the clock which remained at rest), then clearly the moving clock appears to 

lag relative to the one at rest. The converse reasoning, in which the moving clock would be 

considered to be at rest (and vice versa) is now impossible, since the clock describing a 

closed trajectory does not carry out a uniform rectilinear motion, so that a coordinate system 

linked to it will not be inertial. 

Since the laws of nature are the same only for inertial reference frames, the frames linked 

to the clock at rest (inertial frame) and to the moving clock (non-inertial) have different 

properties, and the argument which leads to the result that the clock at rest must lag is not valid. 

The time interval read by a clock is equal to the integral 

-c\dS- 

taken along the world line of the clock. If the clock is at rest then its world line is clearly a 

line parallel to the t axis; if the clock carries out a nonuniform motion in a closed path and 

returns to its starting point, then its world line will be a curve passing through the two points, 

on the straight world line of a clock at rest, corresponding to the beginning and end of the 

motion. On the other hand, we saw that the clock at rest always indicates a greater time 

interval than the moving one. Thus we arrive at the result that the integral 

J ^S' 

taken between a given pair of world points, has its maximum value if it is taken along the 

straight world line joining these two points.! 

§ 4. The Lorentz transformation 

Our purpose is now to obtain the formula of transformation from one inertial reference 

system to another, that is, a formula by means of which, knowing the coordinates x, y, z, t, 

of a certain event in the K system, we can find the coordinates x', y, z, t' of the same event 

in another inertial system K'. 

In classical mechanics this question is resolved very simply. Because of the absolute 

nature of time we there have t = t’\ if, furthermore, the coordinate axes are chosen as usual 

(axes X, X' coincident, Y, Z axes parallel to Y', Z', motion along X, X') then the coordinates 

y, z clearly are equal to /, z, while the coordinates x and x' differ by the distance traversed 

by one system relative to the other. If the time origin is chosen as the moment when the two 

coordinate systems coincide, and if the velocity of the K' system relative to K is V, then this 

distance is Vt. Thus 

f It is assumed, of course, that the points a and b and the curves joining them are such that all elements 

ds along the curves are timelike. 
This property of the integral is connected with the pseudo-euclidean character of the four-dimensional 

geometry. In euclidean space the integral would, of course, be a minimum along the straight line. 
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x-x'+Vt, y = y', z = z', t-t'. (4.1) 

This formula is called the Galileo transformation. It is easy to verify that this transformation, 

as was to be expected, does not satisfy the requirements of the theory of relativity; it does 

not leave the interval between events invariant. 

We shall obtain the relativistic transformation precisely as a consequence of the requirement 

that it leaves the interval between events invariant. 

As we saw in § 2, the interval between events can be looked on as the distance between 

the corresponding pair of world points in a four-dimensional system of coordinates. 

Consequently we may say that the required transformation must leave unchanged all distances 

in the four-dimensional x, y, z, ct, space. But such transformations consist only of parallel 

displacements, and rotations of the coordinate system. Of these the displacement of the 

coordinate system parallel to itself is of no interest, since it leads only to a shift in the origin 

of the space coordinates and a change in the time reference point. Thus the required 

transformation must be expressible mathematically as a rotation of the four-dimensional x, 

y, z, ct, coordinate system. 

Every rotation in the four-dimensional space can be resolved into six rotations, in the 

planes xy, zy, xz, tx, ty, tz (just as every rotation in ordinary space can be resolved into three 

rotations in the planes xy, zy and xz). The first three of these rotations transform only the 

space coordinates; they correspond to the usual space rotations. 

Let us consider a rotation in the tx plane; under this, the y and z coordinates do not change. 

In particular, this transformation must leave unchanged the difference (ct)2 - x2, the square 

of the “distance” of the point (ct, x) from the origin. The relation between the old and the 

new coordinates is given in most general form by the formulas: 

x = x' cosh yr + ct' sinh yr, ct = x' sinh y/ + ct' cosh yr, (4.2) 

where y/ is the “angle of rotation”; a simple check shows that in fact c2/2 - x2 = c2t'2 - x'2. 

Formula (4.2) differs from the usual formulas for transformation under rotation of the 

coordinate axes in having hyperbolic functions in place of trigonometric functions. This is 

the difference between pseudo-euclidean and euclidean geometry. 

We try to find the formula of transformation from an inertial reference frame K to a system 

K' moving relative to K with velocity V along the x axis. In this case clearly only the 

coordinate x and the time t are subject to change. Therefore this transformation must have 

the form (4.2). Now it remains only to determine the angle yr, which can depend only on the 

relative velocity V'.'f 

Let us consider the motion, in the K system, of the origin of the K' system. Then x' = 0 and 

formulas (4.2) take the form: 

x = ct' sinh yr, ct - ct' cosh yr, 

or dividing one by the other, 

~ - tanh yr. 

But xlt is clearly the velocity V of the K' system relative to K. So 

t Note that to avoid confusion we shall always use V to signify the constant relative velocity of two 
inertial systems, and v for the velocity of a moving particle, not necessarily constant. 
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tanh !//=—. 

sinh y/ = cosh iff = - 

Substituting in (4.2), we find: 

y = /. * = *'• t = 
(4.3) 

This is the required transformation formula. It is called the Lorentz transformation, and is 

of fundamental importance for what follows. 
The inverse formulas, expressing a', /, z', t' in terms of a, y, z, t, are most easily obtained 

by changing Vto -V (since the K system moves with velocity-V relative to the K system). 

The same formulas can be obtained directly by solving equations (4.3) for a', /, z, t. 

It is easy to see from (4.3) that on making the transition to the limit c and classical 

mechanics, the formula for the Lorentz transformation actually goes over into the Galileo 

transformation. , „ , 
For V > c in formula (4.3) the coordinates a, t are imaginary; this corresponds to the tact 

that motion with a velocity greater than the velocity of light is impossible. Moreover, one 

cannot use a reference system moving with the velocity of light—in that case the denominators 

in (4.3) would go to zero. 
For velocities V small compared with the velocity of light, we can use in place of (4.3) the 

approximate formulas: 

a = x + Vt', y = y, z = z', t = t'+ - (4.4) 

Suppose there is a rod at rest in the K system, parallel to the X axis. Let its length, 

measured in this system, be Aa = a2- a, (a2 and a, are the coordinates of the two ends of the 

rod in the K system). We now determine the length of this rod as measured in the K system. 

To do this we must find the coordinates of the two ends of the rod (a2 and xx) in this system 

at one and the same time t'. From (4.3) we find: 

a,' + Vt' x'2 + Vt’ 

*i=-f=7T’ *2=-. 

The length of the rod in the K’ system is Ax' = x'2 - x{; subtracting a, from a2, we find 

Aa' 

The proper length of a rod is its length in a reference system in which it is at n 
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us denote it by /o = Ax, and the length of the rod in any other reference frame K' by /. 
Then 

l = lo (4.5) 

Thus a rod has its greatest length in the reference system in which it is at rest. Its length 

in a system in which it moves with velocity V is decreased by the factor ^1 - V2/c2 . This 

result of the theory of relativity is called the Lorentz contraction. 

Since the transverse dimensions do not change because of its motion, the volume 7r of a 
body decreases according to the similar formula 

y= (4.6) 

where Tfi is the proper volume of the body. 

From the Lorentz transformation we can obtain anew the results already known to us 

concerning the proper time (§ 3). Suppose a clock to be at rest in the K' system. We take two 

events occurring at one and the same point x\ /, z in space in the K' system. The time 

between these events in the K' system is At' = t'2 - t{. Now we find the time At which 

elapses between these two events in the K system. From (4.3), we have 

or, subtracting one from the other. 

in complete agreement with (3.1). 

Finally we mention another general property of Lorentz transformations which distinguishes 

them from Galilean transformations. The latter have the general property of commutativity, 

i.e. the combined result of two successive Galilean transformations (with different velocities 

V t and V2) does not depend on the order in which the transformations are performed. On the 

other hand, the result of two successive Lorentz transformations does depend, in general, on 

their order. This is already apparent purely mathematically from our formal description of 

these transformations as rotations of the four-dimensional coordinate system: we know that 

the result of two rotations (about different axes) depends on the order in which they are 

carried out. The sole exception is the case of transformations with parallel vectors Vi and V2 

(which are equivalent to two rotations of the four-dimensional coordinate system about the 
same axis). 

§ 5. Transformation of velocities 

In the preceding section we obtained formulas which enable us to find from the coordinates 

of an event in one reference frame, the coordinates of the same event in a second reference 
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frame. Now we find formulas relating the velocity of a material particle in one reference 

system to its velocity in a second reference system. 
Let us suppose once again that the K' system moves relative to the K system with velocity 

V along the a axis. Let vx = dx/dt be the component of the particle velocity in the K system 

and Vx = dx'/dt' the velocity component of the same particle in the K’ system. From (4.3), 

we have 

dx = 
dx' + Vdt' 

dy-dy', dz = dz'. 

Dividing the first three equations by the fourth and introducing the velocities 

dr 

Tt' 

dr' 

dt' ’ 

we find 

These formulas determine the transformation of velocities. They describe the law of composition 

of velocities in the theory of relativity. In the limiting case of c -» °°, they go over into the 

formulas vx = Vx + V, vy, = Vy, vz = Vz of classical mechanics. 

In the special case of motion of a particle parallel to the X axis, vx = v, vy = vz = 0. 

Then Vy = = 0, Vx = V, so that 

v = (5.2) 

It is easy to convince oneself that the sum of two velocities each smaller than the velocity 

of light is again not greater than the light velocity. 
For a velocity V significantly smaller than the velocity of light (the velocity v can be 

arbitrary), we have approximately, to terms of order Vic: 

Vy = Vy- VZ = V'Z~ VXVZ- 

These three formulas can be written as a single vector formula 

v = v' + V —-t(V • v')v'. (5-3) 
c 

We may point out that in the relativistic-law of addition of velocities (5.1) the two velocities 

v' and V which are combined enter unsymmetrically (provided they are not both directed 

along the a axis). This fact is related to the noncommutativity of Lorentz transformations 

which we mentioned in the preceding section. 

Let us choose our coordinate axes so that the velocity of the particle at the given moment 
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lies in the XY plane. Then the velocity of the particle in the K system has components vx = 

v cos ft vy - v sin ft and in the K' system Vx - V cos 6\ Vy = V sin ft (v, V, ft ft are the 

absolute values and the angles subtended with the X, X' axes respectively in the K, K’ 

systems). With the help of formula (5.1), we then find 

(5.4) 

This formula describes the change in the direction of the velocity on transforming from 

one reference system to another. 

Let us consider a very important special case of this formula, namely, the deviation of 

light in transforming to a new reference system—a phenomenon known as the aberration of 

light. In this case v = V = c, so that the preceding formula goes over into 

J1- 
V2 

- sin ft. 
— + cos ft 
c 

From the same transformation formulas (5.1) it is easy to obtain for sin 6 and cos ft 

(5.5) 

1 + 

- sin ft, cos 6 = - 
cos 6' - 

1 + - 

In case V « c, we find from this formula, correct to terms of order Vic: 

sin 6 - sin 6' - sin 6' cos 6'. 
c 

Introducing the angle A6 = 6' - 6 (the aberration angle), we find to the same order of 
accuracy 

A6 = sin 6', (5.7) 

which is the well-known elementary formula for the aberration of light. 

§ 6. Four-vectors 

The coordinates of an event (ct, x, y, z) can be considered as the components of a four¬ 

dimensional radius vector (or, for short, a four-radius vector) in a four-dimensional space. 

We shall denote its components by x‘, where the index i takes on the values 0, 1,2, 3, and 

x° = ct, xl -x, x2 = y, x3 = z. 

The square of the “length” of the radius four-vector is given by 

(x0)2 - (X1)2 - (x2)2 - (X3)2. 

It does not change under any rotations of the four-dimensional coordinate system, in particular 

under Lorentz transformations. 
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In general a set of four quantities A0, A1, A1, A3 which transform like the components of 

the radius four-vector x' under transformations of the four-dimensional coordinate system is 

called a four-dimensional vector (four-vector) A'. Under Lorentz transformations, 

The square magnitude of any four-vector is defined analogously to the square of the radius 

four-vector: 

(A0)2 - (A1)2 - (A2)2 - (A3)2. 

For convenience of notation, we introduce two “types” of components of four-vectors, 

denoting them by the symbols A' and A„ with superscripts and subscripts. These are related 

by 

A0 = A°, Aj = - A1, A2 = -A2, A3 = - A3. (6.2) 

The quantities A‘ are called the contravariant, and the A,- the covariant components of the 

four-vector. The square of the four-vector then appears in the form 

LA'A; = A°A0 + A1A1 +A2A2 + A3A3. 

Such sums are customarily written simply as A'A„ omitting the summation sign. One 

agrees that one sums over any repeated index, and omits the summation sign. Of the pair of 

indices, one must be a superscript and the other a subscript. This convention for summation 

over “dummy” indices is very convenient and considerably simplifies the writing of formulas. 

We shall use Latin letters /, k,l, ... , for four-dimensional indices, taking on the values 0, 

1, 2, 3. 
In analogy to the square of a four-vector, one forms the scalar product of two different 

four-vectors: 

A% = A°B0 + AlBx + A2B2 + A3B3. 

It is clear that this can be written either as A% or A0—the result is the same. In general one 

can switch upper and lower indices in any pair of dummy indices.! 
The product A'B, is a four-scalar—it is invariant under rotations of the four-dimensional 

coordinate system. This is easily verified directly,! but it is also apparent beforehand (from 

the analogy with the square A'A,) from the fact that all four-vectors transform according to 

the same rule. 

t In the literature the indices are often omitted on four-vectors, and their squares and scalar products are 

written as A2, AB. We shall not use this notation in the present text. 
t One should remember that the law for transformation of a four-vector expressed in covanant components 

differs (in signs) from the same law expressed for contravariant components. Thus, instead of (6.1), one will 
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The component A0 is called the time component, and A1, A2, A3 the space components of 

the four-vector (in analogy to the radius four-vector). The square of a four-vector can be 

positive, negative, or zero; such vectors are called, timelike, spacelike, and null-vectors, 

respectively (again in analogy to the terminology for intervals).! 

Under purely spatial rotations (i.e. transformations not affecting the time axis) the three 

space components of the four-vector A' form a three-dimensional vector A. The time component 

of the four-vector is a three-dimensional scalar (with respect to these transformations). In 

enumerating the components of a four-vector, we shall often write them as 

A' = (A0, A). 

The covariant components of the same four-vector are A, = (A0, - A), and the square of the 

four-vector is A'A, = (A0)2 - A2. Thus, for the radius four-vector: 

x' = (ct, r), Xi = (ct, -r), xixi = c2t2 - r2. *! 1 

For three-dimensional vectors (with coordinates x, y, z) there is no need to distinguish 

between contra- and covariant components. Whenever this can be done without causing 

confusion, we shall write their components as Aa(a=x, y, z) using Greek letters for subscripts. 

In particular we shall assume a summation over x, y, z for any repeated index (for example 
A • B = AaBa). F ’ 

A four-dimensional tensor (four-tensor) of the second rank is a set of sixteen quantities 

A' , which under coordinate transformations transform like the products of components of 

two four-vectors. We similarly define four-tensors of higher rank. 

The components of a second-rank tensor can be written in three forms: covariant, Aik, 

contravariant, A'\ and mixed, A‘k (where, in the last case, one should distinguish between 

Af and A, , i.e. one should be careful about which of the two is superscript and which a 

subscript). The connection between the different types of components is determined from 

the general rule: raising or lowering a space index (1,2,3) changes the sign of the component, 

while raising or lowering the time index (0) does not. Thus: 

A00 = A00, A01 = - A01, A„=An, ..., 

A0° = A00, Ao1 = A01, Aj° = - A01, A,1 = - A11, .... 

Under purely spatial transformations, the nine quantities A11, A12, ... form a three-tensor. 

The three components A01, A02, A03 and the three components A10, A20, A30 constitute three- 

dimensional vectors, while the component A00 is a three-dimensional scalar. 

A tensor A,k is said to be symmetric if Aik = Aki, and antisymmetric if Aik = - Aki. In an 

antisymmetric tensor, all the diagonal components (i.e. the components A00, A11, . . .) are 

zero, since, for example, we must have A00 = - A00. For a symmetric tensor A* the mixed 

components A‘k and Ak obviously coincide; in such cases we shall simply write A‘k, putting 
the indices one above the other. 

In every tensor equation, the two sides must contain identical and identically placed (i.e. 

above or below) free indices (as distinguished from dummy indices). The free indices in 

tensor equations can be shifted up or down, but this must be done simultaneously in all terms 

in the equation. Equating covariant and contravariant components of different tensors is 

“illegal”; such an equation, even if it happened by chance to be valid in a particular reference 
system, would be violated on going to another frame. 

t Null vectors are also said to be isotropic. 
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From the tensor components A,k one can form a scalar by taking the sum 

A\ A°0 + A11 + A22 + A3 3 

(where, of course, A,' = A',). This sum is called the trace of the tensor, and the operation for 

obtaining it is called contraction. 
The formation of the scalar product of two vectors, considered earlier, is a contraction 

operation: it is the formation of the scalar A'B, from the tensor A'Bk. In general, contracting 

on any pair of indices reduces the rank of the tensor by 2. For example, A'*/,- is a tensor of 

second rank A\Bk is a four-vector, A,kik is a scalar, etc. 

The unit four-tensor 8j, satisfies the condition that for any four-vector A', 

8kA‘=Ak. (6.3) 

It is clear that the components of this tensor are 

(i, « 
|0, if 

i = k 

i * k 
(6.4) 

Its trace is 8] = 4. 
By raising the one index or lowering the other in 8k, we can obtain the contra- or 

covariant tensor gik or gih which is called the metric tensor. The tensors g,k and gik have 

identical components, which can be written a s a matrix: 

(1 0 0 O' 

(gik) - (gut) - 

0 -1 0 0 

0 0 -1 0 

,0 0 0 -ly 

(the index i labels the rows, and k the columns, in the order 0, 1,2, 3). It is clear that 

gikAk = Ah gikAk = A'. (6.6) 

The scalar product of two four-vectors can therefore be written in the form: 

A'A, = gikA‘Ak= g,kA,Ak. (6.7) 

The tensors 8k, gik, gik are special in the sense that their components are the same in all 

coordinate systems. The completely antisymmetric unit tensor of fourth rank, elklm, has the 

same property. This is the tensor whose components change sign under interchange of any 

pair of indices, and whose nonzero components are ±1. From the antisymmetry it follows 

that all components in which two indices are the same are zero, so that the only non¬ 

vanishing components are those for which all four indices are different. We set 

em23 = +l (6-8) 

(hence £>0,23 = -1). Then all the other nonvanishing components e,klm are equal to +1 or -1, 

according as the numbers i, k, l, m can be brought to the arrangement 0, 1, 2, 3 by an even 

or an odd number of transpositions. The number of such components is 4! = 24. Thus, 

eiklmejkim = -24. (6.9) 
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With respect to rotations of the coordinate system, the quantities e,klm behave like the 

components of a tensor; but if we change the sign of one or three of the coordinates the 

components e,klm, being defined as the same in all coordinate systems, do not change, 

whereas some of the components of a tensor should change sign. Thus e'klm is, strictly 

speaking, not a tensor, but rather a pseudotensor. Pseudotensors of any rank, in particular 

pseudoscalars, behave like tensors under all coordinate transformations except those that 

cannot be reduced to rotations, i.e. reflections, which are changes in sign of the coordinates 

that are not reducible to a rotation. 

The products elklmePrsl form a four-tensor of rank 8, which is a true tensor; by contracting 

on one or more pairs of indices, one obtains tensors of rank 6, 4, and 2. All these tensors 

have the same form in all coordinate systems. Thus their components must be expressed as 

combinations of products of components of the unit tensor d‘k— the only true tensor whose 

components are the same in all coordinate systems. These combinations can easily be found 

by starting from the symmetries that they must possess under permutation of indices.! 

If A,k is an antisymmetric tensor, the tensor A'k and the pseudotensor A*,k = \ e,klm Alm are 

said to be dual to one another. Similarly, e'klm Am is an antisymmetric pseudotensor of rank 

3, dual to the vector A1. The product A,k A*k of dual tensors is obviously a pseudoscalar. 

In this connection we note some analogous properties of three-dimensional vectors and 

tensors. The completely antisymmetric unit pseudotensor of rank 3 is the set of quantities 

eapr which change sign under any transposition of a pair of indices. The only nonvanishing 

components of eapy are those with three different indices. We set exyz = 1; the others are 1 or 

-1, depending on whether the sequence a, fi, yean be brought to the order x, y, z by an even 

or an odd number of transpositions.! 

t For reference we give the following formulas: 

S‘p Si si si 
tip Skr sk sk eikln,e sk si ssk 
S'p S‘r si si 

S‘p S‘r si 
K ST ST ST 

e'klmeprlm = - 2(S‘pSkr - S'rSk), emmeprtm = - 6<%. 

The overall coefficient in these formulas can be checked using the result of a complete contraction, which 

should give (6.9). 

As a consequence of these formulas we have: 

eprs'A,pAtrA,y4m, = - Aeiklm 

eMmd,rs'A,pAkrAlsAm, = 24A. 

where A is the determinant formed from the quantities A,*. 

t The fact that the components of the four-tensor cMm are unchanged under rotations of the four-dimensional 
coordinate system, and that the components of the three-tensor eapy are unchanged by rotations of the space 
axes are special cases of a general rule: any completely antisymmetric tensor of rank equal to the number 
of dimensions of the space in which it is defined is invariant under rotations of the coordinate system in the 
space. 
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The products eapye-K)lv form a true three-dimensional tensor of rank 6, and are therefore 

expressible as combinations of products of components of the unit three-tensor Sap.t 

Under a reflection of the coordinate system, i.e. under a change in sign of all the coordinates, 

the components of an ordinary vector also change sign. Such vectors are said to be polar. 

The components of a vector that can be written as the cross product of two polar vectors do 

not change sign under inversion. Such vectors are said to be axial. The scalar product of a 

polar and an axial vector is not a true scalar, but rather a pseudoscalar; it changes sign under 

a coordinate inversion. An axial vector is a pseudovector, dual to some antisymmetric 

tensor. Thus, if C = A x B, then 

Ca = \ea[irCpY, where Cpr = ApBy -AyBp. 

Now consider four-tensors. The space components (f, k, = 1, 2, 3) of the antisymmetric 

tensor Aik form a three-dimensional antisymmetric tensor with respect to purely spatial 

transformations; according to our statement its components can be expressed in terms of the 

components of a three-dimensional axial vector. With respect to these same transformations 

the components A01, A02, A03 form a three-dimensional polar vector. Thus the components of 

an antisymmetric four-tensor can be written as a matrix: 

(A*) = 

Px Py Pz 

0 - az ay 

h 0 -°x 

lx ax 0 

(6.10) 

where, with respect to spatial transformations, p and a are polar and axial vectors, respectively. 

In enumerating the components of an antisymmetric four-tensor, we shall write them in the 

form 

Aik = (p, a); 

then the covariant components of the same tensor are 

A,* = (-p» »)- 

Finally we consider certain differential and integral operations of four-dimensional tensor 

analysis. 
The four-gradient of a scalar <j) is the four-vector 

t For reference, we give the appropriate formulas: 

SaX 

eaPrebiv 

San 

Sw 

Sax 

Spv 

Syx 

Contracting this tensor on one, two and three pairs of indices, we get: 

eaPyeXny = SaxSfr ~ S^Sp^, 

eapyem=2SaX, 

eaPyeaPy = 6- 



20 THE PRINCIPLE OF RELATIVITY 

We must remember that these derivatives are to be regarded as the covariant components of 

the four-vector. In fact, the differential of the scalar 

dx1 

is also a scalar; from its form (scalar product of two four-vectors) our assertion is obvious. 

In general, the operators of differentiation with respect to the coordinates x‘, d/dx', should 

be regarded as the covariant components of the operator four-vector. Thus, for example, the 

divergence of a four-vector, the expression dA'Ichf, in which we differentiate the contravariant 

components A', is a scalar, f 

In three-dimensional space one can extend integrals over a volume, a surface or a curve. 

In four-dimensional space there are four types of integrations: 

(1) Integral over a curve in four-space. The element of integration is the line element, i.e. 

the four-vector dx1. 

(2) Integral over a (two-dimensional) surface in four-space. As we know, in three-space 

the projections of the area of the parallelogram formed from the vectors dr and dr' on the 

coordinate planes x„xp are dxadx'p - dxpdx'a. Analogously, in four-space the infinitesimal 

element of surface is given by the antisymmetric tensor of second rank df,k = dx‘dx'k - 

dxkdx'l\ its components are the projections of the element of area on the coordinate planes. 

In three-dimensional space, as we know, one uses as surface element in place of the tensor 

dfap the vector dfa dual to the tensor dfap: dfa = j enpy dfPy. Geometrically this is a vector 

normal to the surface element and equal in absolute magnitude to the area of the element. In 

four-space we cannot construct such a vector, but we can construct the tensor df*,k dual to 

the tensor dflk. 

df*ik =±e'k,mdflm. (6.11) 

Geometrically it describes an element of surface equal to and “normal” to the element of 

f If we differentiate with respect to the “covariant coordinates” xh then the derivatives 

d<j> 

d^~ 
' \_j>± 
c dt’ 

- V<j> 

form the contravariant components of a four-vector. We shall use this form only in exceptional cases [for 
example, for writing the square of the four-gradient (d^dx')l(dtydx,) \. 

We note that in the literature partial derivatives with respect to the coordinates are often abbreviated 
using the symbols. 

d* = 
d 

dx, ’ 
d, 

d 
dx 

In this form of writing of the differentiation operators, the co- or contravariant character of quantities 
formed with them is explicit. This same advantage exists for another abbreviated form for writing derivatives, 
using the index preceded by a comma: 

«/- 
d<j> j d<j> 

dx' ’ dx, 
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surface df,k\ all segments lying in it are orthogonal to all segments in the element df'k. It is 

obvious that df,kdf*k = 0. 

(3) Integral over a hypersurface, i.e. over a three-dimensional manifold. In three-dimensional 

space the volume of the parallelepiped spanned by three vectors is equal to the determinant 

of the third rank formed from the components of the vectors. One obtains analogously the 

projections of the volume of the parallelepiped (i.e. the “areas” of the hypersurface) spanned 

by three four-vectors dx\ dx”, dx"'\ they are given by the determinants 

dx'‘ 

dx'k 

dx'1 

dx" 

dx"1 

dx" 

which form a tensor of rank 3, antisymmetric in all three indices. As element of integration 

over the hypersurface, it is more convenient to use the four-vector dS', dual to the tensor 

dSikL. 

dS‘ = -±eikbn dSklm, dSklm = enklmdSn. (6.12) 

Here 

d& = dSn\ dS1 = dS023, . . . 

Geometrically dS' is a four-vector equal in magnitude to the “areas” of the hypersurface 

element, and normal to this element (i.e. perpendicular to all lines drawn in the hypersurface 

element). In particular, dSA) = dx dy dz, i.e. it is the element of three-dimensional volume dV, 

the projection of the hypersurface element on the hyperplane x° = const. 

(4) Integral over a four-dimensional volume; the element of integration is the scalar 

dLl = dx°dx'dx2 dx3 = cdtdV. (6.13) 

The element is a scalar: it is obvious that the volume of a portion of four-space is unchanged 

by a rotation of the coordinate system, f 
Analogous to the theorems of Gauss and Stokes in three-dimensional vector analysis, 

there are theorems that enable us to transform four-dimensional integrals. 

The integral over a closed hypersurface can be transformed into an integral over the four- 

volume contained within it by replacing the element of integration dSt by the operator 

dSi-^dO.—^. (614) 
dx‘ 

For example, for the integral of a vector A‘ we have: 

f Under a transformation from the integration variables a0, a1, a2, a3 to new variables a'0, a *, a , a , the 

element of integration changes to J d£l\ where d£l' = dx'0 dx'1 dx'2 dx’3 

, d(x'°,x'l,x'2,x'3) 

d(x°,x\x2,x3) 

is the Jacobian of the transformation. For a linear transformation of the form a" = a‘kxk , the Jacobian J 

coincides with the determinant I a’k I and is equal to unity for rotations of the coordinate system; this shows 

the invariance of dCl. 
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(6.15) 

This formula is the generalization of Gauss’ theorem. 

An integral over a two-dimensional surface is transformed into an integral over the 

hypersurface “spanning” it by replacing the element of integration df*k by the operator 

(6.16) 

For example, for the integral of an antisymmetric tensor A* we have: 

The integral over a four-dimensional closed curve is transformed into an integral over the 

surface spanning it by the substitution: 

dxl -> df‘ 

Thus for the integral of a vector, we have: 

fa- d 

dxk' 
(6.18) 

which is the generalization of Stokes’ theorem. 

PROBLEMS 

1. Find the law of transformation of the components of a symmetric four-tensor A,k under Lorentz 
transformations (6.1). 

Solution: Considering the components of the tensor as products of components of two four-vectors, we 
get: 

and analogous formulas for A33, A13 and A03. 
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2. The same for the antisymmetric tensor A1*. 

Solution: Since the coordinates jc2 and x3 do not change, the tensor component A23 does not 

while the components A12, A13 and A02, A03 transform like x' and x°: 

change. 

and similarly for A13, A03. 
With respect to rotations of the two-dimensional coordinate system in the plane x x (which are the 

transformations we are considering) the components A01 = - A10, A00 = A11 =0, form an antisymmetric of 
tensor of rank two, equal to the number of dimensions of the space. Thus, (see the remark on p. 19) these 

components are not changed by the transformations: 

A01 = A'01. 

§ 7. Four-dimensional velocity 

From the ordinary three-dimensional velocity vector one can form a four-vector. This 

four-dimensional velocity (four-velocity) of a particle is the vector 

dxl (7.1) 

To find its components, we note that according to (3.1), 

ds = cdt 1 - 
V c 

where v is the ordinary three-dimensional velocity of the particle. Thus 

dx vx 

(7.2) 

Note that the four-velocity is a dimensionless quantity. 2 
The components of the four-velocity are not independent. Noting that dx^x1 = ds , we 

have 

u‘Ui = 1. (7-3) 

Geometrically, u‘ is a unit four-vector tangent to the world line of the particle. 

Similarly to the definition of the four-velocity, the second derivative 

w’ 
d2x{ _ 

ds2 ~ ds 
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may be called the four-acceleration. Differentiating formula (7.3), we find: 

ii'W1 = 0, (7.4) 

i.e. the four-vectors of velocity and acceleration are “mutually perpendicular”. 

PROBLEM 

Determine the relativistic uniformly accelerated motion, i.e. the rectilinear motion for which the acceleration 
w in the proper reference frame (at each instant of time) remains constant. 

Solution: In the reference frame in which the particle velocity is v = 0, the components of the four- 
acceleration vv' = (0, w/c2, 0, 0) (where iv is the ordinary three-dimensional acceleration, which is directed 
along the x axis). The relativistically invariant condition for uniform acceleration must be expressed by the 
constancy of the four-scalar which coincides with w2 in the proper reference frame: 

In the “fixed” frame, with respect to which the motion is observed, writing out the expression for nAv, 
gives the equation 

Setting v = 0 for t = 0, we find that const = 0, so that 

Integrating once more and setting x = 0 for t = 0, we find: 

For wt « c, these formulas go over the classical expressions v=wt,x = wt2/!. For wt —» <*>, the velocity 
tends toward the constant value c. 

The proper time of a uniformly accelerated particle is given by the integral 

As t —> <*=, it increases much more slowly than t, according to the law clw In (2wtlc). 



CHAPTER 2 

RELATIVISTIC MECHANICS 

§ 8. The principle of least action 

In studying the motion of material particles, we shall start from the Principle of Least 

Action. The principle of least action is defined, as we know, by the statement that for each 

mechanical system there exists a certain integral S, called the action, which has a minimum 

value for the actual motion, so that its variation SS is zero.t 
To determine the action integral for a free material particle (a particle not under the 

influence of any external force), we note that this integral must not depend on our choice of 

reference system, that is, it must be invariant under Lorentz transformations. Then it follows 

that it must depend on a scalar. Furthermore, it is clear that the integrand must be a differential 

of the first order. But the only scalar of this kind that one can construct for a free particle is 

the interval ds, or a ds, where a is some constant. So for a free particle the action must have 

the form 

b 

S = - a J ds, 

where jb is an integral along the world line of the particle between the two particular 

events of the arrival of the particle at the initial position and at the final position at definite 

times t\ and t2, i.e. between two given world points; and a is some constant characterizing 

the particle. It is easy to see that a must be a positive quantity for all particles. In fact, as we 

saw in § 3, a \bds has its maximum value along a straight world line; by integrating along 

a curved world line we can make the integral arbitrarily small. Thus the integral a \ ds with 

the positive sign cannot have a minimum; with the opposite sign it clearly has a minimum, 

along the straight world line. 
The action integral can be represented as an integral with respect to the time 

The coefficient L of dt represents the Lagrange function of the mechanical system. With the 

aid of (3.1), we find: 

t Strictly speaking, the principle of least action asserts that the integral S must be a minimum only for 
infinitesimal lengths of the path of integration. For paths of arbitrary length we can say only that S must be 

an extremum, not necessarily a minimum. (See Mechanics, § 2.) 

25 



26 RELATIVISTIC MECHANICS § 9 

>1 

where vis the velocity of the material particle. Consequently the Lagrangian for the particle 
is 

L = - ac-Jl - v2/c2 . 

The quantity a, as already mentioned, characterizes the particle. In classical mechanics 

each particle is characterized by its mass m. Let us find the relation between a and m. It can 

be determined from the fact that in the limit as c —» °°, our expression for L must go over into 

the classical expression L - mi^/2. To carry out this transition we expand L in powers of 

vie. Then, neglecting terms of higher order, we find 

av1 

In¬ 

constant terms in the Lagrangian do not affect the equation of motion and can be omitted. 

Omitting the constant ac in L and comparing with the classical expression L = mvLH, we 
find that a - me. 

Thus the action for a free material point is 

and the Lagrangian is 

5 = ds (8.1) 

(8.2) 

§ 9. Energy and momentum 

By the momentum of a particle we can mean the vector p = dL/dv (dL/dv is the symbolic 

representation of the vector whose components are the derivatives of L with respect to the 

corresponding components of v). Using (8.2), we find; 

P = (9.1) 

For small velocities (v«c) or, in the limit as c -> °o, this expression goes over into the 

classical p = my. For v = c, the momentum becomes infinite. 

The time derivative of the momentum is the force acting on the particle. Suppose the 

velocity of the particle changes only in direction, that is, suppose the force is directed 
perpendicular to the velocity. Then 

dp 
dt 

m dv 
(9.2) 
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If the velocity changes only in magnitude, that is, if the force is parallel to the velocity, then 

dp 

dt 

dw 

dt' 

We see that the ratio of force to acceleration is different in the two cases. 

The energy dof the particle is defined as the quantity t 

d= p • v - L. 

Substituting the expressions (8.2) and (9.1) for L and p, we find 

(9.3) 

(9.4) 

This very important formula shows, in particular, that in relativistic mechanics the energy 

of a free particle does not go to zero for v= 0, but rather takes on a finite value 

*f = me2. (9-5) 

This quantity is called the rest energy of the particle. 

For small velocities (vie « 1), we have, expanding (9.4) in series in powers of v/c, 

me2 + 

which, except for the rest energy, is the classical expression for the kinetic energy of a 

particle. 
We emphasize that, although we speak of a “particle”, we have nowhere made use of the 

fact that it is “elementary”. Thus the formulas are equally applicable to any composite body 

consisting of many particles, where by m we mean the total mass of the body and by v the 

velocity of its motion as a whole. In particular, formula (9.5) is valid for any body which is 

at rest as a whole. We call attention to the fact that in relativistic mechanics the energy of a 

free body (i.e. the energy of any closed system) is a completely definite quantity which is 

always positive and is directly related to the mass of the body. In this connection we recall 

that in classical mechanics the energy of a body is defined only to within an arbitrary 

constant, and can be either positive or negative. 
The energy of a body at rest contains, in addition to the rest energies of its constituent 

particles, the kinetic energy of the particles and the energy of their interactions with one 

another. In other words, me2 is not equal to Dn/2 (where ma are the masses of the particles), 

and so m is not equal to J,ma. Thus in relativistic mechanics the law of conservation of mass 

does not hold: the mass of a composite body is not equal to the sum of the masses of its parts. 

Instead only the law of conservation of energy, in which the rest energies of the particles are 

included, is valid. 
Squaring (9.1) and (9.4) and comparing the results, we get the following relation between 

the energy and momentum of particle: 

t See Mechanics, § 6. 
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(9.6) —y = p + me. 

The energy expressed in terms of the momentum is called the Hamiltonian function 

<%*= CtJp2 + m2c2 . (9.7) 

For low velocities, p « me, and we have approximately 

, p_ 
2m’ 

i.e., except for the rest energy we get the familiar classical expression for the Hamiltonian. 

From (9.1) and (9.4) we get the following relation between the energy, momentum, and 

velocity of a free particle: 

P = ^^-- (9.8) 

For v = c, the momentum and energy of the particle become infinite. This means that a 

particle with mass m different from zero cannot move with the velocity of light. Nevertheless, 

in relativistic mechanics, particles of zero mass moving with the velocity of light can exist.t 

From (9.8) we have for such particles: 

P = ~- (9.9) 

The same formula also holds approximately for particles with nonzero mass in the so-called 

ultrarelativistic case, when the particle energy d is large compared to its rest energy me2. 

We now write all our formulas in four-dimensional form. According to the principle of 

least action. 

SS = - mcS J ds = 0. 

To set up the expression for SS, we note that ds - ^dx-dx‘ and therefore 

SS=-mcj^^ = -mcjuldSX‘. 

Integrating by parts, we obtain 

b 

SS = - mcUiSx' |* + me J Sx‘ ~^ds. (9.10) 

As we know, to get the equations of motion we compare different trajectories between the 

same two points, i.e. at the limits (Sx')a = (Sx‘)h = 0. The actual trajectory is then determined 

t For example, light quanta and neutrinos. 
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from the condition SS — 0. From (9.10) we thus obtain the equations duj/ds — 0; that is, a 

constant velocity for the free particle in four-dimensional form. 

To determine the variation of the action as a function of the coordinates, one must consider 

the point a as fixed, so that (Sx')a = 0. The second point is to be considered as variable, but 

only actual trajectories are admissible, i.e., those which satisfy the equations of motion. 

Therefore the integral in expression (9.10) for SS is zero. In place of (8x‘)h we may write 

simply 8x\ and thus obtain 

SS = - mcUiSx1. (9.11) 

The four-vector 

Pi = - 
dS 

dx‘ 
(9.12) 

is called the momentum four-vector. As we know from mechanics, the derivatives dS/dx, 

dS/dy, dS/dz are the three components of the momentum vector p of the particle, while the 

derivative -dSIdt is the particle energy 6. Thus the covariant components of the four-mementum- 

are p, - (die, - p), while the contravariant components aref 

p' = (die, p). (9.13) 

From (9.11) we see that the components of the four-momentum of a free particle are: 

p' = mcu‘. (9.14) 

Substituting the components of the four-velocity from (7.2), we see that we actually get 

expressions (9.1) and (9.4) for p and K 

Thus, in relativistic mechanics, momentum and energy are the components of a single 

four-vector. From this we immediately get the formulas for transformation of momentum 

and energy from one inertial system to another. Substituting (9.13) in the general formulas 

(6.1) for transformation of four-vectors, we find: 

where px, py, pz are the components of the three-dimensional vector p. 

From the definition (9.14) of the four-momentum, and the identity 

the square of the four-momentum of a free particle: 

PiP1 = m2c2. 

= 1, we have, for 

(9.16) 

Substituting the expressions (9.13), we get back (9.6). 

By analogy with the usual definition of the force, the force four-vector is defined as the 

derivative: 

g‘ 
_ dy_ (9.17) 

t We call attention to a mnemonic for remembering the definition of the physical four-vectors: the 
contravariant components are related to the corresponding three-dimensional vectors (r for p for p‘) with 

the “right”, positive sign. 
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Its components satisfy the identity = 0. The components of this four-vector are expressed 

in terms of the usual three-dimensional force vector f = dp/dt: 

(9.18) 

The time component is related to the work done by the force. 

The relativistic Hamilton-Jacobi equation is obtained by substituting the derivatives 

-dSIdx1 for pj in (9.16): 

dS dS 

dxi dx‘ 

or, writing the sum explicitly: 

ik dS dS 22 

IMSY _ (f^Y _ (9S)2 _ (dsV _ 

2\dt) J J v^z J n (9.20) 

The transition to the limiting case of classical mechanics in equation (9.19) is made as 

follows. First of all we must notice that just as in the corresponding transition with (9.7), the 

energy of a particle in relativistic mechanics contains the term me2, which it does not in 

classical mechanics. Inasmuch as the action 5 is related to the energy by d = - (dS/dt), in 

making the transition to classical mechanics we must in place of 5 substitute a new action 

S' according to the relation: 

5 = 5'- mc2t. 

Substituting this in (9.20), we find 

In the limit as c -> °°, this equation goes over into the classical Hamilton-Jacobi equation. 

§ 10. Transformation of distribution functions 

In various physical problems we have to deal with distribution functions for the momenta 

of particles: f(p)dpxdpydpz is the number of particles having momenta with components in 

given intervals dpx, dpy, dpz (or, as we say for brevity, the number of particles in a given 

volume element d3p = dpxdpydpz in “momentum space”). We are then faced with the 

problem of finding the law of transformation of the distribution function /(p) when we 

transform from one reference system to another. 

To solve this problem, we first determine the properties of the “volume element” dpxdpydpz 

with respect to Lorentz transformations. If we introduce a four-dimensional coordinate 

system, on whose axes are marked the components of the four-momentum of a particle, then 

dpxdpydpz can be considered as the zeroth component of an element of the hypersurface 

defined by the equation plpt - m2c2. The element of hypersurface is a four-vector directed 
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along the normal to the hypersurface; in our case the direction of the normal obviously 

coincides with the direction of the four-vector pr From this it follows that the ratio 

dpxdpydpz 

F 
(10.1) 

is an invariant quantity, since it is the ratio of corresponding components of two parallel 

four-vectors.t 
The number of particles, fdpxdpydpz, is also obviously an invariant, since it does not 

depend on the choice of reference frame. Writing it in the form 

/( P)* 
dpxdpydpz 

F 
and using the invariance of the ratio (10.1), we conclude that the product/(p)^is invariant. 

Thus the distribution function in the K' system is related to the distribution function in the 

K system by the formula 

/'(P') = 
/(p)y (10.2) 

where p and d must be expressed in terms of p' and by using the transformation formulas 

(9.15). 
Let us now return to the invariant expression (10.1). If we introduce “spherical coordinates” 

in momentum space, the volume element dpx dpy dpz becomes p2dpdo, where do is the 

element of solid angle around the direction of the vector p. Noting that pdp = dd'dlc1 

[from (9.6)], we have: 

p2dpdo _ pdif do 

F c2 ’ 

Thus we find that the expression 

pd (f do (10.3) 

is also invariant. 
The notion of a distribution function appears in a different aspect in the kinetic theory of 

gases: the product/(r, p)dpxdpydpzdV is the number of particles lying in a given volume 

element dV and having momenta in definite intervals dpx, dpy, dpz. The function/(r, p) is 

t The integration with respect to the element (10.1) can be expressed in four-dimensional form by means 
of the 5-function (cf. the footnote on p. 74) as an integration with respect to 

^S(pip‘ - m2c2 )d4p, ifp = dp°dpldp2dpi. (10.1a) 

The four components pl are treated as independent variables (with p° taking on only positive values). 
Formula (10.1a) is obvious from the following representation of the delta function appearing in it: 

S(p‘Pi-m2c2) = 5^(p0)2 “frj = 'lfr[^(Po + f"] + 5(Po _c^)] ’ <101*) 

where *f= c^Jp2 + m2c2 . This formula in turn follows from formula (V) of the footnote on p. 74. 
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called the distribution function in phase space (the space of the coordinates and momenta of 

the particle), and the product of differentials dr = d3p dV is the element of volume of this 

space. We shall find the law of transformation of this function. 

In addition to the two reference systems K and K', we also introduce the frame K0 in which 

the particles with the given momentum are at rest; the proper volume dV0 of the element 

occupied by the particles is defined relative to this system. The velocities of the systems K 

and K' relative to the system K0 coincide, by definition, with the velocities v and V which 

these particles have in the systems K and K'. Thus, according to (4.6), we have 

dV = dV0 ^ 1 - dV' = dV0 

from which 

dV _ if' 

dV' if' 

Multiplying this equation by the equation d^pld^p' = d’/if', we find that 

dT=dT/, (10.4) 

i.e. the element of phase volume is invariant. Since the number of particles / dr is also 

invariant, by definition, we conclude that the distribution function in phase space is an 

invariant: 

/,(r/, pO =/(r, p), (10.5) 

where r', p' are related to r, p by the formulas for the Lorentz transformation. 

§ 11. Decay of particles 

Let us consider the spontaneous decay of a body of mass M into two parts with masses mx 

and m2. The law of conservation of energy in the decay, applied in the system of reference 

in which the body is at rest, givesf 

M = ^10+^20- (11.1) 

where and <f20 are the energies of the emerging particles. Since rfl0 > mx and <f20 > m2, the 

equality (11.1) can be satisfied only if M> mx + m2, i.e. a body can disintegrate spontaneously 

into parts the sum of whose masses is less than the mass of the body. On the other hand, if 

M <m\ + m2 the body is stable (with respect to the particular decay) and does not decay 

spontaneously. To cause the decay in this case, we would have to supply to the body from 

outside an amount of energy at least equal to its “binding energy” (ml + m2 — M). 

Momentum as well as energy must be conserved in the decay process. Since the initial 

momentum of the body was zero, the sum of the momenta of the emerging particles must be 

zero: p10 + P20 = 0- Consequently pf0 = p2(i, or 

t In §§ 11-13 we set c = 1. In other words the velocity of light is taken as the unit of velocity (so that 
the dimensions of length and time become the same). This choice is a natural one in relativistic mechanics 
and greatly simplifies the writing of formulas. However, in this book (which also contains a considerable 
amount of nonrelativistic theory) we shall not usually use this system of units, and will explicitly indicate 
when we do. 

If c has been set equal to unity in formulas, it is easy to convert back to ordinary units: the velocity is 
introduced to assure correct dimensions. 
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<^10 - m2 = &20 - m\. (11.2) 

The two equations (11.1) and (11.2) uniquely determine the energies of the emerging particles: 

M2 - 
(11.3) 

In a certain sense the inverse of this problem is the calculation of the total energy M of two 

colliding particles in the system of reference in which their total momentum is zero. (This 

is abbreviated as the “system of the centre of inertia” or the “C-system”.) The computation 

of this quantity gives a criterion for the possible occurrence of various inelastic collision 

processes, accompanied by a change in state of the colliding particles, or the “creation” of 

new particles. A process of this type can occur only if the sum of the masses of the “reaction 

products” does not exceed M. 

Suppose that in the initial reference system (the “laboratory” system) a particle with mass 

mi and energy collides with a particle of mass m2 which is at rest. The total energy of the 

two particles is 

&=&! +%’2 = &i + m2, 

and their total momentum is p = p, + p2 = Pi- Considering the two particles together as a 

single composite system, we find the velocity of its motion as a whole from (9.8): 

y _ P _ Pi 
(f <?f i + 1712 (11.4) 

This quantity is the velocity of the C-system with respect to the laboratory system (the L- 

system). 
However, in determining the mass M, there is no need to transform from one reference 

frame to the other. Instead we can make direct use of formula (9.6), which is applicable to 

the composite system just as it is to each particle individually. We thus have 

M2 = 2 - p2 = (if i + m2)2 - (^!2 - ml), 

from which 

M2 = ml + m\ + 2m2%i. (11.5) 

PROBLEMS 

1. A particle moving with velocity V dissociates “in flight” into two particles. Determine the relation 

between the angles of emergence of these particles and their energies. 

Solution: Let / 0 be the energy of one of the decay particles in the C-system [i.e. 10 or ff2o >n (11-3)], 
if the energy of this same particle in the L-system, and 6 its angle of emergence in the L-system (with 

respect to the direction of V). By using the transformation formulas we find: 

so that 
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For the determination of / from cos 8 we then get the quadratic equation 

if 2 (1 - V2 cos2 8) - 2<fcf0 V1-V2 + (1 - V2 ) + V2m2cos2 8 = 0, (2) 

which has one positive root (if the velocity v0 of the decay particle in the C-system satisfies vn > V) or two 
positive roots (if v0 < V). 

The source of this ambiguity is clear from the following graphical construction. According to (9.15), the 
momentum components in the L-system are expressed in terms of quantities referring to the C-system by 
the formulas 

Eliminating 60, we get 

Py = Po sin • 

Py + (Px Vl - = Po- 

With respect to the variables px. py, this is the equation of an ellipse with semiaxes p0/-y/l - V2, p0, whose 

centre (the point O in Fig. 3) has been shifted a distance A0 V7 Vl - V2 from the point p = 0 (point A in 

Fig. 3).t 

(a) V< v0 (b) V> v0 

Fig. 3. 

If V > pijs o = v0, the point A lies outside the ellipse (Fig. 3b), so that for a fixed angle 8 the vector p (and 
consequently the energy /) can have two different values. It is also clear from the construction that in this 
case the angle 8 cannot exceed a definite value 0max (corresponding to the position of the vector p in which 
it is tangent to the ellipse). The value of 0max is most easily determined analytically from the condition that 
the discriminant of the quadratic equation (2) go to zero: 

2. Find the energy distribution of the decay particles in the L-system. 

Solution: In the C-system the decay particles are distributed isotropically in direction, i.e. the number of 
particles within the element of solid angle do0 = 2n sin 60 d0o is 

The energy in the L-system is given in terms of quantities referring to the C-system by 

^ y0 +poVcose0 

and runs through the range of values from 

*o ~ vPo 

Vi - v2 

t In the classical limit, the ellipse reduces to a circle. (See Mechanics, § 16.) 
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Expressing d I cos;0o I in terms of dd, we obtain the normalized energy distribution (for each of the two 

types of decay particles): 

3. Determine the range of values in the L-system for the angle between the two decay particles (their 

separation angle) for the case of decay into two identical particles. 

Solution: In the C-system, the particles fly off in opposite directions, so that 0U) = n- 02O = ®o- According 
to (5.4), the connection between angles in the C- and L-systems is given by the formulas: 

(since v10 = v20 = v0 in the present case). The required separation angle is © = 

calculation gives: 

02, and a simple 

V2 - Vp + V2 Vp si 

An examination of the extreme for this expression gives the following ranges of possible values of 0: 

for V < v(): 2 &<n; 

n_. 
2’ 

for V > —t=^=: 0 < © < 2 ' 

4. Find the angular distribution in the L-system for decay particles of zero mass. 

Solution: According to (5.6) the connection between the angles of emergence in the C- and L-systems for 

particles with m = 0 is 

0 1 - V' cos 0' 

Substituting this expression in formula (1) of Problem 2, we find: 

dN= (l-V^do 

4tt(1 - Vcos 0)2 

5. Find the distribution of separation angles in the L-system for a decay into two particles of zero mass. 

Solution: The relation between the angles of emergence, 0b 02 in the L-system and the angles 0iO = 0o, 
02O = n- 0O in the C-system is given by (5.6), so that we have for the separation angle 0 = 0,+ 02: 

2 l/2 - 1 - V2 cos2 0O 

C0S " 1 - V2 cos20o 

and conversely. 

Substituting this expression in formula (1) of problem 2, we find: 
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dN = 1 - V2 

16 xV sin3 

do 

The angle © takes on values from n to ©min = 2 cos-1 V. 

6. Determine the maximum energy which can be carried off by one of the decay particles, when a particle 
of mass M at rest decays into three particles with masses mt, m2, and m3. 

Solution: The particle ra, has its maximum energy if the system of the other two particles m2 and m3 has 
the least possible mass; the latter is equal to the sum m2 + m, (and corresponds to the case where the two 
particles move together with the same velocity). Having thus reduced the problem to the decay of a body 
into two parts, we obtain from (11.3): 

- (m2 + m3 )2 

2M 

§ 12. Invariant cross-section 

Collision processes are characterized by their invariant cross-sections, which determine the 

number of collisions (of the particular type) occurring between beams of colliding particles. 

Suppose that we have two colliding beams; we denote by n, and n2 the particle densities 

in them (i.e. the numbers of particles per unit volume) and by vt and v2 the velocities of the 

particles. In the reference system in which particle 2 is at rest (or, as one says, in the rest 

frame of particle 2), we are dealing with the collision of the beam of particles 1 with a 

stationary target. Then according to the usual definition of the cross-section a, the number 

of collisions occurring in volume dV in time dt is 

dv = ovrel n\n2dVdt. 

where vrel is the velocity of particle 1 in the rest system of particle 2 (which is just the 

definition of the relative velocity of two particles in relativistic mechanics). 

The number dvis by its very nature an invariant quantity. Let us try to express it in a form 

which is applicable in any reference system: 

dv = An^dVdt, (12.1) 

where A is a number to be determined, for which we know that its value in the rest frame of 

one of the particles is vrd a. We shall always mean by crprecisely the cross-section in the rest 

frame of one of the particles, i.e. by definition, an invariant quantity. From its definition, the 
relative velocity vrel is also invariant. 

In the expression (12.1) the product dVdt is an invariant. Therefore the product Anxn2 must 
also be an invariant. 

The law of transformation of the particle density n is easily found by noting that the 

number of particles in a given volume element dV, ndV, is invariant. Writing ndV = n()dV0 

(the index 0 refers to the rest frame of the particles) and using formula (4.6) for the 

transformation of the volume, we find: 

n (12.2) 

or n = n0 ef lm, where / is the energy and m the mass of the particles. 

Thus the statement that Anx n2 is invariant is equivalent to the invariance of the expression 

Adi d2. This condition is more conveniently represented in the form 
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PuPi 

*1 #2 (12.3) 

where the denominator is an invariant—the product of the four-momenta of the two particles. 

In the rest frame of particle 2, we have tf'2 = m2, p2 = 0, so that the invariant quantity (12.3) 

reduces to A. On the other hand, in this frame A = rrvrel. Thus in an arbitrary reference 

system. 

^ = <rvrel (12.4) 
0 62 

To give this expression its final form, we express vrel in terms of the momenta or velocities 

of the particles in an arbitrary reference frame. To do this we note that in the rest frame of 

particle 2, 

Then 

. mi 
PuPi = --m2. 

A/l " rel 

Vrel = 
(PliPl) 

(12.5) 

Expressing the quantity pup‘2 = #2 ~ Pi • P2 in terms of the velocities Vj and v2 by using 

formulas (9.1) and (9.4): 

PuP'2=m'm2 

and substituting in (12.5), after some simple transformations we get the following expression 

for the relative velocity: 

V(v, -VZ)2 -<V,XV2)2 (126) 

rel 1 - Vj ■ v2 

(we note that this expression is symmetric in and v2, i.e. the magnitude of the relative 

velocity is independent of the choice of particle used in defining it). 

Substituting (12.5) or (12.6) in (12.4) and then in (12.1), we get the final formulas for 

solving our problem: 

^](pup'2)2 -mfm} 
dv= a--——-rtjn2dVdt (12.7) 

n c2 

or _ 

dv=a -y/(vi - v2)2 - (v! x v2)2 n^dVdt (12.8) 

(W. Pauli, 1933). 
If the velocities V[ and v2 are collinear, then Vj x v2 = 0, so that formula (12.8) takes the 

form: 

dv = a I Vj — v2 I nin2dVdt. (12.9) 
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PROBLEM 

Find the “element of length” in relativistic “velocity space”. 

Solution: The required line element dlv is the relative velocity of two points with velocities v and v + d\. 
We therefore find from (12.6) 

dl2 = (rfv)2 -(vxdv)2 
" (1-v^)2 

dv1 

(l-v1)2 
e-d<s>2). 

where 6, tj> are the polar angle and azimuth of the direction of v. If in place of v we introduce the new 
variable x through the equation v = tanh x, the line element is expressed as: 

dll = dx2 + sinh2 x(d02 + sin2 6 d<j>2). 

From the geometrical point of view this is the line element in three-dimensional Lobachevskii space— 
the space of constant negative curvature (see (111.12)). 

§ 13. Elastic collisions of particles 

Let us consider, from the point of view of relativistic mechanics, the elastic collision of 

particles. We denote the momenta and energies of the two colliding particles (with masses 

m\ and m2) by pb and p2, we use primes for the corresponding quantities after 

collision. The laws of conservation of momentum and energy in the collision can be written 

together as the equation for conservation of the four-momentum: 

P\ +P‘2 =P\ +P2- (13.1) 

From this four-vector equation we construct invariant relations which will be helpful in 

further computations. To do this we rewrite (13.1) in the form: 

P\ +Pi - Pi +P2, 

and square both sides (i.e. we write the scalar product of each side with itself). Noting that 

the squares of the four-momenta p{ and p\' are equal to mf, and the squares of pl2 and p2 
are equal to /nf, we get: 

"h2 + PuPi ~ PuPi - PuPi = 0. (13.2) 

Similarly, squaring the equation p[ + p‘2 - p’2‘ = p[', we get: 

ml + PuPi - p\p’j - pup2‘ = 0. (13.3) 

Let us consider the collision in a reference system (the L-system) in which one of the 

particles (m2) was at rest before the collision. Then p2 = 0,<f2 = m2, and the scalar products 

appearing in (13.2) are: 

PuP,2=dim1, 

PiiP'\‘ = m2d{, (13.4) 

PuPi = #i &i- Pi - Pi = ^i K-pip'i cos eu 

where 6X is the angle of scattering of the incident particle mx. Substituting these expressions 
in (13.2) we get: 
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where 02 is the angle between the transferred momentum p2 and the momentum of the 

incident particle pj. 
The formulas (13.5)—(13.6) relate the angles of scattering of the two particles in the L- 

system to the changes in their energy in the collision. Inverting these formulas, we can 

express the energies S\\ <t2 in terms of the angles 0j or 62. Thus, substituting in (13.6) 

Pl = JsJ- m}, p'2 = J(&i)2 - ml and squaring both sides, we find after a simple 

_ + m2 )2 + (^i ~ mi ) cos 02 (13.7) 

°2 " m2 (£f, + m2 )2 - (^2 - m\) cos2 02 

Inversion of formula (13.5) leads in the general case to a very complicated formula for 

in terms of 6X. 
We note that if m, > m2, i.e. if the incident particle is heavier than the target particle, the 

scattering angle 6X cannot exceed a certain maximum value. It is easy to find by elementary 

computations that this value is given by the equation 

which coincides with the familiar classical result. 
Formulas (13.5)—(13.6) simplify in the case when the incident particle has zero mass: mx 

= 0, and correspondingly px - /(, p[ = (‘\- For this case let us write the formula for the 

energy of the incident particle after the collision, expressed in terms of its angle of deflection: 

Let us now turn once again to the general case of collision of particles of arbitrary mass. 

The collision is most simply treated in the C-system. Designating quantities in this system 

by the additional subscript 0, we have p10 = - P20 - Po- From the conservation of momentum, 

during the collision the momenta of the two particles merely rotate, remaining equal in 

magnitude and opposite in direction. From the conservation of energy, the value of each of 

the momenta remains unchanged. 
Let X the angle of scattering in the C-system—the angle through which the momenta 

pl0 and p20 are rotated by the collision. This quantity completely determines the scattering 

process in the C-system, and therefore also in any other reference system. It is also convenient 

in describing the collision in the L-system and serves as the single parameter which remains 

undetermined after the conservation of momentum and energy are applied. 

We express the final energies of the two particles in the L-system in terms of this parameter. 

To do this we return to (13.2), but this time write out the product pup[‘ in the C-system: 
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P\iP'\‘ = <^10^10 - Pio ■ Pio = ^10 - Po cos X = pi (! - cosX) + rn\ 

(in the C-system the energies of the particles do not change in the collision: = *f10). We 

write out the other two products in the L-system, i.e we use (13.4). As a result we get: 

- (‘\ = ~(Po/m2 )(1 - cos^). We must still express p\ in terms of quantities referring 

to the L-system. This is easily done by equating the values of the invariant pup‘2 in the L- 

and C-systems: 

or %io%20 ~ Pio ‘ P20 = ^m2, 

■\j(.Po + mf)(pl + ml) = ^1 /w2 - Po • 

Solving the equation for pi, we get: 

2 ml (^i2 ~ mi ) 

0 ml + ml + 2m2Yx ’ 

Thus, we finally have: 

(13.10) 

m2(% 1 - mf) 

mf + m\ + 2m2tfl 
(1 - cos x )• (13.11) 

The energy of the second particle is obtained from the conservation law: ^ + m2= 

Therefore 

^2 m2 + 
mf + ml + 2m1Y] 

(1 - cos x )• (13.12) 

The second terms in these formulas represent the energy lost by the first particle and 

transferred to the second particle. The maximum energy transfer occurs for x = K* and is 
equal to 

^'max -m2=Yl- Y/mr 
2rn2 (Hi2 - mf) 

ml + ml + 2 m2S[ 
(13.13) 

The ratio of the minimum kinetic energy of the incident particle after collision to its initial 
energy is: 

^1 min - m\ (mx - m2)2 

% - mi ml + ml + 2m1Yl ’ 
(13.14) 

In the limiting case of low velocities (when ef ~m + mv1/2), this relation tends to a constant 
limit, equal to 

( mx — m2 'j2 

\ml + m2 ) 

In the opposite limit of large energies tf[, relation (13.14) tends to zero; the quantity 

tends to a constant limit. This limit is 

ml + ml 

2 m: 
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Let us assume that m2 » ffi\, i.e. the mass of the incident particle is small compared to the 

mass of the particle at rest. According to classical mechanics the light particle could transfer 

only a negligible part of its energy (see Mechanics, § 17). This is not the case in relativistic 

mechanics. From formula (13.14) we see that for sufficiently large energies rf 1 the fraction 

of the energy transferred can reach the order of unity. For this it is not sufficient that the 

velocity of m, be of order 1, but one must have if x ~ m2, i.e. the light particle must have an 

energy of the order of the rest energy of the heavy particle. 

A similar situation occurs for m2 « rnx, i.e. when a heavy particle is incident on a light 

one. Here too, according to classical mechanics, the energy transfer would be insignificant. 

The fraction of the energy transferred begins to be significant only for energies <^, ~ m2/m2 ■ 
We note that we are not taking simply of velocities of the order of the light velocity, but of 

energies large compared to m,, i.e. we are dealing with the ultrarelativistic case. 

PROBLEMS 

1. The triangle ABC in Fig. 4 is formed by the momentum vector p of the impinging particle and the 
momenta p|, p'2 of the two particles after the collision. Find the locus of the points C corresponding to all 

possible values of pi, p2. 

Solution: The required curve is an ellipse whose semiaxes can be found by using the formulas obtained 
in problem 1 of § 11. In fact, the construction given there determined the locus of the vectors p in the L- 
system which are obtained from arbitrarily directed vectors p0 with given length />„ in the C-system. 

Fig. 4. 

Since the absolute values of the momenta of the colliding particles are identical in the C-system, and do 
not change in the collision, we are dealing with a similar construction for the vector p(, for which 

m2V 
Po = P10 - P20 - ^ ^2" 

in the C-system where V is the velocity of particle m2 in the C-system, coincides in magnitude with the 
velocity of the centre of inertia, and is equal to V = p,/(A 1 + m2) (see (11.4)). As a result we find that the 

minor and major semiaxes of the ellipse are 

Po 
_m2Pi_ Po m2pi(¥l+m2) 

(the first of these is, of course, the same as (13.10)). 

For 0) = 0, the vector pj coincides with Pi, so that the distance AB is equal top,. Comparing px with the 

length of the major axis of the ellipse, it is easily shown that the point A lies outside the ellipse \iml>m2 

(Fig. 4a), and inside it if mj < m2 (Fig. 4b). 

2. Determine the minimum separation angle 0m;n of two particles after collision of the masses of the two 

particles are the same (mx = m2 = m). 
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Solution: If m, = m2, the point A of the diagram lies on the ellipse, while the minimum separation angle 
corresponds to the situation where point C is at the end of the minor axis (Fig. 5). From the construction 
it is clear that tan (0min/2) is the ratio of the lengths of the semiaxes, and we find: 

0min 
tan 2 I 2m 

or 

cos 0min 
#l-m 
&i + 3 m • 

A 

Fig. 5. 

3. For the collision of two particles of equal mass m, express <f2\ x in terms of the angle 6, of 
scattering in the L-system. 

Solution: Inversion of formula (13.5) in this case gives: 

y,,_ m (f‘i + m) + (A, - m) cos2^ f-m C^2 ~ m2 ) sin2^ 

(#i + m) - (A, - m) cos2©, ’ "2 + 2m + (^ - m) sin2F, ‘ 

Comparing with the expression for in terms of X - 

- ~2m (1 - cos/), 

we find the angle of scattering in the C-system: 

cos x = 2m ~ + Sin2gl 
2m + (^ - m) sin2©; ' 

§ 14. Angular momentum 

As is well known from classical mechanics, for a closed system, in addition to conservation 

of energy and momentum, there is conservation of angular momentum, that is, of the vector 

M = X r x p 

where r and p are the radius vector and momentum of the particle; the summation runs over 

all the particles making up the system. The conservation of angular momentum is a consequence 

of the fact that because of the isotropy of space, the Lagrangian of a closed system does not 
change under a rotation of the system as a whole. 

By carrying through a similar derivation in four-dimensional form, we obtain the relativistic 

expression for the angular momentum. Let *' be the coordinates of one of the particles of the 

system. We make an infinitesimal rotation in the four-dimensional space. Under such a 
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transformation, the coordinates x' take on new values x" such that the differences xl — x' are 

linear functions 

- x' = xkmik (i4.i) 

with infinitesimal coefficients SQ^. The components of the four-tensor 8Qtk are connected 

to one another by the relations resulting from the requirement that, under a rotation, the 

length of the radius vector must remain unchanged, that is, x[xn - x,x‘. Substituting for x" 

from (14.1) and dropping terms quadratic in 8Q.ik, as infinitesimals of higher order, we find 

x'/SQ,* = 0. 

This equation must be fulfilled for arbitrary x'. Since x'x* is a symmetric tensor, 8Q.ik must 

be an antisymmetric tensor (the product of a symmetrical and an antisymmetrical tensor is 

clearly identically zero). Thus we find that 

8Qki = -8Qik. (14.2) 

The change in the action for an infinitesimal change of coordinates of the initial point a 

and the final point b of the trajectory has the form (see 9.11): 

8S = 

(the summation extends over all the particles of the system). In the case of rotation which 

we are now considering, 8xt = 8£ltkxk, and so 

5S = - saik X pixk |\ 

If we resolve the tensor Xp'x* into symmetric and antisymmetric parts, then the first of 

these when multiplied by an antisymmetric tensor gives identically zero. Therefore, taking 

the antisymmetric part of X/?'/, we can write the preceding equality in the form 

8S = - 8Qik \ X (p‘xk - pkx‘) \ba . (14.3) 

For a closed system the action, being an invariant, is not changed by a rotation in 4-space. 

This means that the coefficients of 8Q.ik in (14.3) must vanish: 

X(p'xt-ptA = KPf^-PtA- 

Consequently we see that for a closed system the tensor 

Mik = Y.(x'pk - xkp‘) . (14.4) 

This antisymmetric tensor is called th e four-tensor of angular momentum. The space components 

of this tensor are the components of the three-dimensional angular momentum vector M = 

Xrxp: 

A/23 = Mx, -Mn=My, A/12 = Mz. 

The components A/01, A/02, A/03 form a vector X(fp - cfrlc1). Thus, we can write the 

components of the tensor M,k in the form: 

Mik -m|. (14.5) 
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(Compare (6.10).) 

Because of the conservation of M,k for a closed system, we have, in particular. 

§ 14 

Since, on the other hand, the total energy X f-is also conserved, this equality can be written 
in the form 

2ifr 

2 if 

c^Zp 
2 if 

const. 

(Quantities referring to different particles are taken at the same time t). 

From this we see that the point with the radius vector 

moves uniformly with the velocity 

. 2 if r 

' 2& 
(14.6) 

V 
c2Ip 

2 if ’ 
(14.7) 

which is none other than the velocity of motion of the system as a whole. [It relates the total 

energy and momentum, according to formula (9.8).] Formula (14.6) gives the relativistic 

definition of the coordinates of the centre of inertia of the system. If the velocities of all the 

particles are small compared to c, we can approximately set if-me2 so that (14.6) goes over 
into the usual classical expression 

2 
2m ' 

t 

We note that the components of the vector (14.6) do not constitute the space components 

of any four-vector, and therefore under a transformation of reference frame they do not 

transform like the coordinates of a point. Thus we get different points for the centre of 

inertia of a given system with respect to different reference frames. 

PROBLEM 

Find the connection between the angular momentum M of a body (system of particles) in the reference 
frame K in which the body moves with velocity V, and its angular momentum M<0) in the frame K0 in which 
the body is at rest as a whole; in both cases the angular momentum is defined with respect to the same 
point—the centre of inertia of the body in the system Kq.% 

t We note that whereas the classical formula for the centre of inertia applies equally well to interacting 
and non-interacting particles, formula (14.6) is valid only if we neglect interaction. In relativistic mechanics, 
the definition of the centre of inertia of a system of interacting particles requires us to include explicitly the 
momentum and energy of the field produced by the particles. 

i We remind the reader that although in the system Kn (in which Ip = 0) the angular momentum is 
independent of the choice of the point with respect to which it is defined, in the K system (in which Ip * 
0) the angular momentum does depend on this choice (see Mechanics, § 9). 
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Solution: The K0 system moves relative to the K system with velocity V; we choose its direction for the 
x axis. The components of Mik that we want transform according to the formulas (see problem 2 in § 6): 

Since the origin of coordinates was chosen at the centre of inertia of the body (in the K0 system), in that 
system I Kr = 0, and since in that system Ip = 0, Af*0'02 = Af<0)03 = 0. Using the connection between the 

components of Mlk and the vector M, we find for the latter: 

A/<°> 
Mz 

A/f 
Mz=Mf\ My = 



CHAPTER 3 

CHARGES IN ELECTROMAGNETIC FIELDS 

§ 15. Elementary particles in the theory of relativity 

The interaction of particles can be described with the help of the concept of a field of 

force. Namely, instead of saying that one particle acts on another, we may say that the 

particle creates a field around itself; a certain force then acts on every other particle located 

in this field. In classical mechanics, the field is merely a mode of description of the physical 

phenomenon—the interaction of particles. In the theory of relativity, because of the finite 

velocity of propagation of interactions, the situation is changed fundamentally. The forces 

acting on a particle at a given moment are not determined by the positions at that same 

moment. A change in the position of one of the particles influences other particles only after 

the lapse of a certain time interval. This means that the field itself acquires physical reality. 

We cannot speak of a direct interaction of particles located at a distance from one another. 

Interactions can occur at any one moment only between neighbouring points in space (contact 

interaction). Therefore we must speak of the interaction of the one particle with the field, 

and of the subsequent interaction of the field with the second particle. 

We shall consider two types of fields, gravitational and electromagnetic. The study of 

gravitational fields is left to Chapters 10 to 14 and in the other chapters we consider only 

electromagnetic fields. 

Before considering the interactions of particles with the electromagnetic field, we shall 

make some remarks concerning the concept of a “particle” in relativistic mechanics. 

In classical mechanics one can introduce the concept of a rigid body, i.e., a body which is 

not deformable under any conditions. In the theory of relativity it should follow similarly 

that we would consider as rigid those bodies whose dimensions all remain unchanged in the 

reference system in which they are at rest. However, it is easy to see that the theory of 

relativity makes the existence of rigid bodies impossible in general. 

Consider, for example, a circular disk rotating around its axis, and let us assume that it is 

rigid. A reference frame fixed in the disk is clearly not inertial. It is possible, however, to 

introduce for each of the infinitesimal elements of the disk an inertial system in which this 

element would be at rest at the moment; for different elements of the disk, having different 

velocities, these systems will, of course, also be different. Let us consider a series of line 

elements, lying along a particular radius vector. Because of the rigidity of the disk, the 

length of each of these segments (in the corresponding inertial system of reference) will be 

the same as it was when the disk was at rest. This same length would be measured by an 

observer at rest, past whom this radius swings at the given moment, since each of its 

segments is perpendicular to its velocity and consequently a Lorentz contraction does not 

occur. Therefore the total length of the radius as measured by the observer at rest, being the 

46 
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sum of its segments, will be the same as when the disk was at rest. On the other hand, the 

length of each element of the circumference of the disk, passing by the observer at rest at a 

given moment, undergoes a Lorentz contraction, so that the length of the whole circumference 

(measured by the observer at rest as the sum of the lengths of its various segments) turns out 

to be smaller than the length of the circumference of the disk at rest. Thus we arrive at the 

result that due to the rotation of the disk, the ratio of circumference to radius (as measured 

by an observer at rest) must change, and not remain equal to 2n. The absurdity of this result 

shows that actually the disk cannot be rigid, and that in rotation it must necessarily undergo 

some complex deformation depending on the elastic properties of the material of the disk. 

The impossibility of the existence of rigid bodies can be demonstrated in another way. 

Suppose some solid body is set in motion by an external force acting at one of its points. If 

the body were rigid, all of its points would have to be set in motion at the same time as the 

point to which the force is applied; if this were not so the body would be deformed. 

However, the theory of relativity makes this impossible, since the force at the particular 

point is transmitted to the others with a finite velocity, so that all the points cannot begin 

moving simultaneously. 
From this discussion we can draw certain conclusions concerning the treatment of 

“elementary” particles, i.e. particles whose state we assume to be described completely by 

giving its three coordinates and the three components of its velocity as a whole. It is obvious 

that if an elementary particle had finite dimensions, i.e. if it were extended in space, it could 

not be deformable, since the concept of deformability is related to the possibility of independent 

motion of individual parts of the body. But, as we have seen, the theory of relativity shows 

that it is impossible for absolutely rigid bodies to exist. 
Thus we come to the conclusion that in classical (non-quantum) relativistic mechanics, we 

cannot ascribe finite dimensions to particles which we regard as elementary. In other words, 

within the framework of classical theory elementary particles must be treated as points.! 

§ 16. Four-potential of a field 

For a particle moving in a given electromagnetic field, the action is made up of two parts: 

the action (8.1) for the free particle, and a term describing the interaction of the particle with 

the field. The latter term must contain quantities characterizing the particle and quantities 

characterizing the field. 
It turns outi that the properties of a particle with respect to interaction with the electro¬ 

magnetic field are determined by a single parameter—the charge e of the particle, which can 

be either positive or negative (or equal to zero). The properties of the field are characterized 

by a four-vector A„ the four-potential, whose components are functions of the coordinates 

and time. These quantities appear in the action function in the term 

t Quantum mechanics makes a fundamental change in this situation, but here again relativity theory 

makes it extremely difficult to introduce anything other than point interactions. 

% The assertions which follow should be regarded as being, to a certain extent, the consequence of 

experimental data. The form of the action for a particle in an electromagnetic field cannot be fixed on the 

basis of general considerations alone (such as, for example, the requirement of relativistic invariance). The 

latter would permit the occurrence in formula (16.1) of terms of the form I Ads, where A is a scalar function. 

To avoid any misunderstanding, we repeat that we are considering classical (and not quantum) theory, 

and therefore do not include effects which are related to the spins of particles. 
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where the functions A, are taken at points on the world line of the particle. The factor 1/c has 

been introduced for convenience. It should be pointed out that, so long as we have no 

formulas relating the charge or the potentials with already known quantities, the units for 

measuring these new quantities can be chosen arbitrarily.! 

Thus the action function for a charge in an electromagnetic field has the form 

b 

S = J ^-mcds -^Atdx' j. (16.1) 

The three space components of the four-vector A* form a three-dimensional vector A 

called the vector potential of the field. The time component is called the scalar potential; we 
denote it by A0 = <p. Thus 

A' = (<j). A). (16.2) 

Therefore the action integral can be written in the form 

b 

S = J ^-mcds + ^ A • dr - e<pdt\ 

Introducing dr/dt = v, and changing to an integration over t. 

<2 r 

The integrand is just the Lagrangian for a charge in an electromagnetic field: 

L= me2 Jl - -p- + ^ A ■ v - e<j). (16.4) 

This function differs from the Lagrangian for a free particle (8.2) by the terms (etc) A • v - 

e<j), which describe the interaction of the charge with the field. 

The derivative dL/dv is the generalized momentum of the particle; we denote it by P. 

Carrying out the differentiation, we find 

P = (16.5) 

Here we have denoted by p the ordinary momentum of the particle, which we shall refer to 

simply as its momentum. 

From the Lagrangian we can find the Hamiltonian function for a particle in a field from 
the general formula 

t Concerning the establishment of these units, see § 27. 
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dL 

d\ 

Substituting (16.4), we get 

(16.6) 

However, the Hamiltonian must be expressed not in terms of the velocity, but rather in terms 

of the generalized momentum of the particle. 
From (16.5) and (16.6) it is clear that the relation between JT- e<p and P - (e/c)A is the 

same as the relation between -'A and p in the absence of the field, i.e. 

r- e(j> Y _n (16.7) 

(16.8) 

For low velocities, i.e. for classical mechanics, the Lagrangian (16.4) goes over into 

L = 
mv2 

— A • v - ed). 
c 

(16.9) 

In this approximation 

p = mv = P - - A, 
F c 

and we find the following expression for the Hamiltonian: 

St =P-—a! + e<j). (16.10) 
2 m\ c ) 

Finally we write the Hamilton—Jacobi equation for a particle in an electromagnetic field. 

It is obtained by replacing, in the equation for the Hamiltonian, P by dS/dr, and 

by -(dS/dt). Thus we get from (16.7) 

+ e*)\mV=0. (16.11) 

§ 17. Equations of motion of a charge in a field 

A charge located in a field not only is subjected to a force exerted by the field, but also in 

turn acts on the field, changing it. However, if the charge e is not large, the action of the 

charge on the field can be neglected. In this case, when considering the motion of the charge 

in a given field, we may assume that the field itself does not depend on the coordinates or 

the velocity of the charge. The precise conditions which the charge must fulfil in order to be 
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considered as small in the present sense, will be clarified later on (see § 75). In what follows 

we shall assume that this condition is fulfilled. 

So we must find the equations of motion of a charge in a given electromagnetic field. 

These equations are obtained by varying the action, i.e. they are given by the Lagrange 

equations 

d_(dL\_dLL 

dt ^ d\ ) dr' 
(17.1) 

where L is given by formula (16.4). 

The derivative dL/d\ is the generalized momentum of the particle (16.5). Further, we 

write 

dA-v-c grad 0. 

But from a formula of vector analysis. 

grad (a • b) = (a • V)b + (b • V)a + b x curl a + a x curl b, 

where a and b are two arbitrary vectors. Applying this formula to A • v, and remembering 

that differentiation with respect to r is carried out for constant v, we find 

—- = -(v • V) A + — v 
dr c c 

curl A — e grad 0. 

So the Lagrange equation has the form: 

^ A j = ^(v • V)A + ^ v x curl A - e grad 0. 

But the total differential (dA/dt) dt consists of two parts: the change (dA/dt) dt of the vector 

potential with time at a fixed point in space, and the change due to motion from one point 

in space to another at distance dr. This second part is equal to (dr ■ V)A. Thus 

dA 

dt 
+ (v • V) A. 

Substituting this in the previous equation, we find 

dp _ e dA 

dt ~ c dt 
grad 0 + ^ v x curl A. (17.2) 

This is the equation of motion of a particle in an electromagnetic field. On the left side 

stands the derivative of the particle’s momentum with respect to the time. Therefore the 

expression on the right of (17.2) is the force exerted on the charge in an electromagnetic 

field. We see that this force consists of two parts. The first part (first and second terms on 

the right side of 17.2) does not depend on the velocity of the particle. The second part (third 

term) depends on the velocity, being proportional to the velocity and perpendicular to it. 

The force of the first type, per unit charge, is called the electric field intensity; we denote 

it by E. So by definition. 
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E = - - grad 0. (17.3) 

The factor of v/c in the force of the second type, per unit charge, is called the magnetic 

field intensity. We designate it by H. So by definition, 

H = curl A. (17.4) 

If in an electromagnetic field, E * 0 but H = 0, then we speak of an electric field; if E = 

0 but H 5t 0, then the field is said to be magnetic. In general, the electromagnetic field is a 

superposition of electric and magnetic fields. 

We note that E is a polar vector while H is an axial vector. 

The equation of motion of a charge in an electromagnetic field can now be written as 

^ = eE + — v x H. (17.5) 
dt c 

The expression on the right is called the Lorentz force. The first term (the force which the 

electric field exerts on the charge) does not depend on the velocity of the charge, and is 

along the direction of E. The second part (the force exerted by the magnetic field on the 

charge) is proportional to the velocity of the charge and is directed perpendicular to the 

velocity and to the magnetic field H. 

For velocities small compared with the velocity of light, the momentum p is approximately 

equal to its classical expression mv, and the equation of motion (17.5) becomes 

n&- = eE + Z v x H, (17.6) 
dt c 

Next we derive the equation for the rate of change of the kinetic energy of the particlet 

with time, i.e. the derivative 

It is easy to check that 

d#idn dp 

dt df 

Substituting dp/dt from (17.5) and noting that v x H • v = 0, we have 

^SS. = eE - v. (17.7) 
at 

The rate of change of the kinetic energy is the work done by the field on the particle per 

unit time. From (17.7) we see that this work is equal to the product of the velocity by the 

force which the electric field exerts on the charge. The work done by the field during a time 

dt, i.e. during a displacement of the charge by dr, is clearly equal to eE ■ dr. 

t By “kinetic” we mean the energy (9.4), which includes the rest energy. 
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We emphasize the fact that work is done on the charge only by the electric field; the 

magnetic field does no work on a charge moving in it. This is connected with the fact that 

the force which the magnetic field exerts on a charge is always perpendicular to the velocity 

of the charge. 

The equations of mechanics are invariant with respect to a change in sign of the time, that 

is, with respect to interchange of future and past. In other words, in mechanics the two time 

directions are equivalent. This means that if a certain motion is possible according to the 

equations of mechanics, then the reverse motion is also possible, in which the system passes 

through the same states in reverse order. 

It is easy to see that this is also valid for the electromagnetic field in the theory of 

relativity. In this case, however, in addition to changing t into - t, we must reverse the sign 

of the magnetic field. In fact it is easy to see that the equations of motion (17.5) are not 

altered if we make the changes 

E -> E, H —» - H. (17.8) 

According to (17.3) and (17.4), this does not change the scalar potential, while the vector 

potential changes sign: 

0->0, A —» - A. (17.9) 

Thus, if a certain motion is possible in an electromagnetic field, then the reversed motion 

is possible in a field in which the direction of H is reversed. 

PROBLEM 

Express the acceleration of a particle in terms of its velocity and the electric and magnetic field intensities. 

Solution: Substitute in the equation of motion (17.5) p = v d kin/c2, and take the expression for ddkJdt 
from (17.7). As a result, we get 

xH--Lv(vE). 

§ 18. Gauge invariance 

Let us consider to what extent the potentials are uniquely determined. First of all we call 

attention to the fact that the field is characterized by the effect which it produces on the 

motion of a charge located in it. But in the equation of motion (17.5) there appear not the 

potentials, but the field intensities E and H. Therefore two fields are physically identical if 

they are characterized by the same vectors E and H. 

If we are given potentials A and <p, then these uniquely determine (according to (17.3) and 

(17.4)) the fields E and H. However, to one and the same field there can correspond different 

potentials. To show this, let us add to each component of the potential the quantity - dfld.'xk, 

where/is an arbitrary function of the coordinates and the time. Then the potential Ak goes 

over into 

K = Ak 
dj_ 
dxk ' 

(18.1) 

As a result of this change there appears in the action integral (16.1) the additional term 
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which is a total differential and has no effect on the equations of motion. (See Mechanics, 

§2-) - , , • , 
If in place of the four-potential we introduce the scalar and vector potentials, and in place 

of xf, the coordinates ct, x, y, z, then the four equations (18.1) can be written in the form 

A' = A + grad/, 0'= 0--^^-. (18.3) 

It is easy to check that electric and magnetic fields determined from equations (17.3) and 

(17.4) actually do not change upon replacement of A and 0 by A' and 0', defined by (18.3). 

Thus the transformation of potentials (18.1) does not change the fields. The potentials are 

therefore not uniquely defined; the vector potential is determined to within the gradient of 

an arbitrary function, and the scalar potential to within the time derivative of the same 

function. 
In particular, we see that we can add an arbitrary constant vector to the vector potential, 

and an arbitrary constant to the scalar potential. This is also clear directly from the fact that 

the definitions of E and H contain only derivatives of A and 0, and therefore the addition of 

constants to the latter does not affect the field intensities. 
Only those quantities have physical meaning which are invariant with respect to the 

transformation (18.3) of the potentials; in particular all equations must be invariant under 

this transformation. This invariance is called gauge invariance (in German, eichinvarianz)A 

This nonuniqueness of the potentials gives us the possibility of choosing them so that they 

fulfil one auxiliary condition chosen by us. We emphasize that we can set one condition, 

since we may choose the function/in (18.3) arbitrarily. In particular, it is always possible 

to choose the potentials so that the scalar potential 0 is zero. If the vector potential is not 

zero, then it is not generally possible to make it zero, since the condition A = 0 represents 

three auxiliary conditions (for the three components of A). 

§ 19. Constant electromagnetic field 

By a constant electromagnetic field we mean a field which does not depend on the time. 

Clearly the potentials of a constant field can be chosen so that they are functions only of the 

coordinates and not of the time. A constant magnetic field is equal, as before, to H = curl A. 

A constant electric field is equal to 

E = - grad 0. (19.1) 

Thus a constant electric field is determined only by the scalar potential and a constant 

magnetic field only by the vector potential. 
We saw in the preceding section that the potentials are not uniquely determined. However, 

it is easy to convince oneself that if we describe the constant electromagnetic field in terms 

of potentials which do not depend on the time, then we can add to the scalar potential, 

without changing the fields, only an arbitrary constant (not depending on either the coordinates 

t We emphasize that this is related to the assumed constancy of e in (18.2). Thus the gauge invariance 
of the equations of electrodynamics (see below) and the conservation of charge are closely related to one 

another. 
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or the time). Usually Q is subjected to the additional requirement that it has a definite value 

at some particular point in space; most frequently <j) is chosen to be zero at infinity. Thus the 

arbitrary constant previously mentioned is determined, and the scalar potential of the constant 

field is thus determined uniquely. 

On the other hand, just as before, the vector potential is not uniquely determined even for 

the constant electromagnetic field; namely, we can add to it the gradient of an arbitrary 

function of the coordinates. 

We now determine the energy of a charge in a constant electromagnetic field. If the field 

is constant, then the Lagrangian for the charge also does not depend explicitly on the time. 

As we know, in this case the energy is conserved and coincides with the Hamiltonian. 

According to (16.6), we have 

Thus the presence of the field adds to the energy of the particle the term e<j), the potential 

energy of the charge in the field. We note the important fact that the energy depends only on 

the scalar and not on the vector potential. This means that the magnetic field does not affect 

the energy of the charge. Only the electric field can change the energy of the particle. 

This is related to the fact that the magnetic field, unlike the electric field, does no work on 

the charge. 

If the field intensities are the same at all points in space, then the field is said to be 

uniform. The scalar potential of a uniform electric field can be expressed in terms of the 

field intensity as 

0 = - E - r. (19.3) 

In fact, since E = const, V(E • r) = (E • V) r = E. 

The vector potential of a uniform magnetic field can be expressed in terms of its field 

intensity as 

A = yH x r. (19.4) 

In fact, recalling that H = const, we obtain with the aid of well-known formulas of vector 

analysis: 

curl (H x r) = H div r - (H • V)r = 2H 

(noting that div r = 3). 

The vector potential of a uniform magnetic field can also be chosen in the form 

Ax = - Hy, Ay = Az = 0 (19.5) 

(the z axis is along the direction of H). It is easily verified that with this choice for A we have 

H = curl A. In accordance with the transformation formulas (18.3), the potentials (19.4) and 

(19.5) differ from one another by the gradient of some function: formula (19.5) is obtained 

from (19.4) by adding V/, where/ = -xyH/2. 

PROBLEM 

Give the variational principle for the trajectory of a particle (Maupertuis’ principle) in a constant 
electromagnetic field in relativistic mechanics. 
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Solution: Maupertuis’ principle consists in the statement that if the energy of a particle is conserved 
(motion in a constant field), then its trajectory can be determined from the variational equation 

S J P dr = 0, 

where P is the generalized momentum of the particle, expressed in terms of the energy and the coordinate 
differentials, and the integral is taken along the trajectory of the particle, t Substituting P = p + (e/c)A and 

noting that the directions of p and dr coincide, we have 

[pdl + fA dr] =0’ 
where dl = -[dr 2 is the element of arc. Determining p from 

we obtain finally 

§ 20. Motion in a constant uniform electric field 

Let us consider the motion of a charge e in a uniform constant electric field E. We take the 

direction of the field as the X axis. The motion will obviously proceed in a plane, which we 

choose as the XT plane. Then the equations of motion (17.5) become 

px = eE, py = 0 

(where the dot denotes differentiation with respect to /), so that 

px = eEt, Py-Po- (20.1) 

The time reference point has been chosen at the moment when px = 0; p0 is the momentum 

of the particle at that moment. 
The kinetic energy of the particle (the energy omitting the potential energy in the field) is 

= Cyjm2c2 + p2 . Substituting (20.1), we find in our case 

^kin = V-V + c2p2 + (ceEt)2 = Jifl + (ceEt)2 , (20.2) 

where d() is the energy at t = 0. 
According to (9.8) the velocity of the particle is v = pc2/^kin. For the velocity vx - x v/e 

have therefore 

dx _ pxc2 _ c2eEt 

~dt~ ^ldn " ^ 2 + (ceEt f 

Integrating, we find 

t See Mechanics, § 44. 
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(20.3) x = JE (ceEt)2 . 

The constant of integration we set equal to zero.f 

For determining y, we have 

from which 

_ Pyc2 
* <^kin 

PqC2 

y = (20.4) 

We obtain the equation of the trajectory by expressing t in terms of y from (20.4) and 
substituting in (20.3). This gives: 

<f0 eE 
x = — cosh —-. 

eE p0c (20.5) 

Thus in a uniform electric field a charge moves along a catenary curve. 

If the velocity of the particle is v « c, then we can set p0 = mv0, 0 = me2, and expand 

(20.5) in series in powers of He. Then we get, to within terms of higher order. 

x = 
eE 2 

2^P + const, 

that is, the charge moves along a parabola, a result well known from classical mechanics. 

§ 21. Motion in a constant uniform magnetic field 

We now consider the motion of a charge e in a uniform magnetic field H. We choose the 

direction of the field as the Z axis. We rewrite the equation of motion 

p = — v x H 
c 

in another form, by substituting for the momentum, from (9.8), 

where ^is the energy of the particle, which is constant in the magnetic field. The equation 
of motion then goes over into the form 

or, expressed in terms of components, 

vx - (ovy, 

t This result (forp0 = 0) coincides with the solution of the problem of relativistic motion with constant 
“proper acceleration" w0 = eE/m (see the problem in § 7). For the present case, the constancy of the 
acceleration is related to the fact that the electric field does not change for Lorentz transformations having 
velocities V along the direction of the field (see § 24). 

(41.1) 

Vy = -covx, i/ = 0, (21.2) 
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where we have introduced the notation 

_ ecH 

V ' 

We multiply the second equation of (21.2) by i, and add it to the first: 

4~{vx + iv.) = - ia){vx + ivy), 
at 

(21.3) 

so that 

vx + ivy = ae l0*, 

where a is a complex constant. This can be written in the form a = v0re where v0t and a 

are real. Then 

u, + ivy = v0le-i<6*+a) 

and, separating real and imaginary parts, we find 

vx = Vq, cos (cat + a), vy = — Vq, sin {ax + a). (21.4) 

The constants v0l, and a are determined by the initial conditions; a is the initial phase, and 

as for v(l„ from (21.4) it is clear that 

vot = + 
that is, vot, is the velocity of the particle in the XY plane, and stays constant throughout the 

motion. 
From (21.4) we find, integrating once more, 

x = x0 + r sin {ax + a), y = yo+r cos + «)> (21.5) 

where 

_ vot _ vot & cPt 
r~ (o - ecH eH 

(21.6) 

{p, is the projection of the momentum on the XY plane). From the third equation of (21.2), 

we find v, = v0z and 

z = z0+ v0zt. (21.7) 

From (21.5) and (21.7), it is clear that the charge moves in a uniform magnetic field along 

a helix having its axis along the direction of the magnetic field and with a radius r given by 

(21.6). The velocity of the particle is constant. In the special case where v0z = 0, that is, the 

charge has no velocity component along the field, it moves along a circle in the plane 

perpendicular to the field. 
The quantity <0, as we see from the formulas, is the angular frequency of rotation of the 

particle in the plane perpendicular to the field. 2 
If the velocity of the particle is low, then we can approximately set if=mc . Then the 

frequency 0) is changed to 

(21.8) 
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We shall now assume that the magnetic field remains uniform but varies slowly in magnitude 

and direction. Let us see how the motion of a charged particle changes in this case. 

We know that when the conditions of the motion are changed slowly, certain quantities 

called adiabatic invariants remain constant. Since the motion in the plane perpendicular to 

the magnetic field is periodic, the adiabatic invariant is the integral 

1=itjp'dr- 

taken over a complete period of the motion, i.e. over the circumference of a circle in the 

present case (P, is the projection of the generalized momentum on the plane perpendicular 
to Hf). Substituting P, = p, + (e/c) A, we have: 

i = sfp''rfr = 5?fp''* + S?f A'*- 

In the first term we note that p, is constant in magnitude and directed along dr; we apply 

Stokes’ theorem to the second term and write curl A = H:* 

(21.9) 

From this we see that, for slow variation of H, the tangential momentumpt varies proportionally 
to 4h. 

This result can also be applied to another case, when the particle moves along a helical 

path in a magnetic field that is not strictly homogeneous (so that the field varies little over 

distances comparable with the radius and step of the helix). Such a motion can be considered 

as a motion in a circular orbit that shifts in the course of time, while relative to the orbit the 

field appears to change in time but remain uniform. One can then state that the component 

of the momentum transverse to the direction of the field varies according to the law: pt = \ C H, 
where C is a constant and H is a given function of the coordinates. On the other hand, just 

as for the motion in any constant magnetic field, the energy of the particle (and consequently 

the square of its momentum p2) remains constant. Therefore the longitudinal component of 
the momentum varies according to the formula: 

Pf =P2 ~p} =P2 - CH(x,y,z). (21.10) 

Since we should always have p2 > 0, we see that penetration of the particle into regions 

of sufficiently high field (CH > p2) is impossible. During motion in the direction of increasing 

field, the radius of the helical trajectory decreases proportionally to pJH (i.e. proportionally 

t See Mechanics, § 49. In general the integrals j p dq, taken over a period of the particular coordinate 

q, are adiabatic invariants. In the present case the periods for the two coordinates in the plane perpendicular 
to H coincide, and the integral / which we have written is the sum of the two corresponding adiabatic in¬ 
variants. However, each of these invariants individually has no special significance, since it depends on the 
(non-unique) choice of the vector potential of the field. The nonuniqueness of the adiabatic invariants 
which results from this is a reflection of the fact that, when we regard the magnetic field as uniform over 
all of space, we cannot in principle determine the electric field which results from changes in H, since it will 
actually depend on the specific conditions at infinity. 

*By inspecting the direction of motion of a charge along the orbit for a given direction of H, we observe 
that it is counterclockwise if we look along H. Hence the negative sign in the second term. 
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to 1/VN), and the step proportionally to pb On reaching the boundary where pi vanishes, 

the particle is reflected; while continuing to rotate in the same direction it begins to move 

opposite to the gradient of the field. 
Inhomogeneity of the field also leads to another phenomenon—a slow transverse shift 

(drift) of the guiding centre of the helical trajectory of the particle (the name given to the 

centre of the circular orbit); problem 3 of the next section deals with this question. 

PROBLEM 

Determine the frequency of vibration of a charged spatial oscillator, placed in a constant, uniform 
magnetic field; the proper frequency of vibration of the oscillator (in the absence of the field) is ftfc. 

Solution: The equations of forced vibration of the oscillator in a magnetic field (directed along the z axis) 

„ eH . .. o eH . .. , _ 
x+ colx = —y, y+eo^y = — x, z + (o0z- 0. 

Multiplying the second equation by i and combining with the first, we find 

where £=x+ iy. From this we find that the frequency of vibration of the oscillator in a plane perpendicular 

to the field is 

If the field H is weak, this formula goes over into 

CO = COq ± eHI2mc. 

The vibration along the direction of the field remains unchanged. 

§ 22, Motion of a charge in constant uniform electric and magnetic fields 

Finally we consider the motion of a charge in the case where there are present both electric 

and magnetic fields, constant and uniform. We limit ourselves to the case where the velocity 

of the charge v« c, so that its momentum p = mv; as we shall see later, it is necessary for 

this that the electric field be small compared to the magnetic. 
We choose the direction of H as the Z axis, and the plane passing through H and E as the 

YZ plane. Then the equation of motion 

mv = eE + —v x H 
c 

can be written in the form 

mx = -yH, my = eEv - —xH, mz = eEz. (22.1) 
cJ y c 

From the third equation we see that the charge moves with uniform acceleration in the Z 

direction, that is. 

(22.2) 
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Multiplying the second equation of (22.1) by i and combining with the first, we find 

+ iy) + io)(x + iy) = i-^Ey 

(<0= eHImc). The integral of this equation, where x + iy is considered as the unknown, is 

equal to the sum of the integral of the same equation without the right-hand term and a 

particular integral of the equation with the right-hand term. The first of these is ae~,at, the 

second is eEy/m(o = cEy/H. Thus 

cEy 
x + iy = ae + —. 

The constant a is in general complex. Writing it in the form a = be,x, with real b and a, we 

see that since a is multiplied by e~icat, we can, by a suitable choice of the time origin, give 

the phase a any arbitrary value. We choose this so that a is real. Then breaking up x + iy 

into real and imaginary parts, we find 

cEy 
x = a cos cot + —pj~, y = - a sin (ot. (22.3) 

At t = 0 the velocity is along the X axis. 

We see that the components of the velocity of the particle are periodic functions of the 

time. Their average values are: 

cEy 

~fT’ y = o. 

This average velocity of motion of a charge in crossed electric and magnetic fields is often 

called the electrical drift velocity. Its direction is perpendicular to both fields and independent 

of the sign of the charge. It can be written in vector form as: 

- cE x H 

H2 ’ 
(22.4) 

All the formulas of this section assume that the velocity of the particle is small compared 

with the velocity of light; we see that for this to be so, it is necessary in particular that the 

electric and magnetic fields satisfy the condition 

(22.5) 

while the absolute magnitudes of Ey and H can be arbitrary. 

Integrating equation (22.3) again, and choosing the constant of integration so that at t = 0, 

x = y = 0, we obtain 

x — ~ sin cot + y = ^(cos at - 1). (22.6) 

Considered as parametric equations of a curve, these equations define a trochoid. Depending 

on whether a is larger or smaller in absolute value than the quantity cEy/H, the projection 

of the trajectory on the plane XY has the forms shown in Figs. 6a and 6b, respectively. 

If a = - cEy/H, then (22.6) becomes 
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that is, the projection of the trajectory on the XY plane is a cycloid (Fig. 6c). 

y 

(22.7) 

Fig. 6. 

PROBLEMS 

1. Determine the relativistic motion of a charge in parallel uniform electric and magnetic fields. 

Solution: The magnetic field has no influence on the motion along the common direction of E and H (the 
z axis), which therefore occurs under the influence of the electric field alone; therefore according to § 20 

we find: 

Z = ^§-. = AH + (ceEt^ ■ 

For the motion in the xy plane we have the equation 

px=^Hvy, py=-^Hvx, 

Consequently 

Px+iPy=Pte~i^ 

where p, is the constant value of the projection of the momentum on the xy plane, and the auxiliary quantity 

<P is defined by the relation 
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from which 

. rt=Ssinhf^ (1) 

Furthermore we have: 

+ iPy=Ple-‘* = '-^L(i + iy) = 

CPt ■ . cpt 
x = 7H*n*- y = ~eHC°S ^ 

Formulas (1), (2) together with the formula 

z = ?icosh#*’ 

(2) 

(3) 

determine the motion of the particle in parametric form. The trajectory is a helix with radius cp,/eH and 
monotonically increasing step, along which the particle moves with decreasing angular velocity 0 = 
eHdtfy^ and with a velocity along the z axis which tends toward the value c. 

2. Determine the relativistic motion of a charge in electric and magnetic fields which are mutually 
perpendicular and equal in magnitude.t 

Solution: Choosing the z axis along H and the y axis along E and setting E = H, we write the equations 
of motion: 

dp* 
dt 

dPy _ 

and, as a consequence of them, formula (17.7), 

From these equations we have: 

Also using the equation 

pz = const, rf kin- cPx = const = a. 

&Un -°2pl - kin + CPx W kin ~ CPx) = C* Py + £2 

(where e2 = m2c4 + c2 p2= const), we find: 

and so 

^kin + CPx = ~(c2p2 £2), 

^kin 
a 
2 

C2Py +£2 
2 a 

Px 
ai c2P2 + £2 
2c + 2ac 

t The problem of motion in mutually perpendicular fields E and H which are not equal in magnitude can, 
by a suitable transformation of the reference system, be reduced to the problem of motion in a pure electric 
or a pure magnetic field (see § 25). 
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Furthermore, we write 

63 

^km = eE{^ un - ifki*Vx j = eE(tfVm -cpx) = eEa, 

from which 

01 
To determine the trajectory, we make a transformation of variables in the equations 

dt ^ 

to the variable py by using the relation dt = t*kmdpy/eEa, after which integration gives the formulas: 

y~2 cxeEPy’ z~PeEaPy' 

Formulas (1) and (2) completely determine the motion of the particle in parametric form (parameter py). We 
call attention to the fact that the velocity increases most rapidly in the direction perpendicular to E and H 

(the x axis). 

3. Determine the velocity of drift of the guiding centre of the orbit of a nonrelativistic charged particle 

in a quasihomogeneous magnetic field (H. Alfven, 1940). 

Solution: We assume first that the particle is moving in a circular orbit, i.e. its velocity has no longitudinal 
component (along the field). We write the equation of the trajectory in the form r = R(f) + £(t), where R(f) 
is the radius vector of the guiding centre (a slowly varying function of the time), while £(t) is a rapidly 
oscillating quantity describing the rotational motion about the guiding centre. We average the force 

(etc) r x H(r) acting on the particle over a period of the oscillatory (circular) motion (compare Mechanics, 

§ 30). We expand the function H(r) in this expression in powers of 

H(r) = H(R) + (C • V)H(R). 

On averaging, the terms of first order in £(f) vanish, while the second-degree terms give rise to an additional 

force 

f=-^x(£-V)H. 

For a circular orbit 

C=®£xn, 

where n is a unit vector along H; the frequency (0= eHImc; is the velocity of the particle in its circular 
motion. The average values of products of components of the vector £, rotating in a plane (the plane 

perpendicular to n), are: 

where &ap is the unit tensor in this plane. As a result we find: 
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Because of the equations div H = 0 and curl H = 0 which the constant field H(R) satisfies, we have: 

(n x V) x H = -n div H + (n ■ V)H + n x (V x H) = (n • V)H = H(n ■ V)n + n(n ■ VH). 

We are interested in the force transverse to n, giving rise to a shift of the orbit; it is equal to 

2P ' 

where p is the radius of curvature of the force line of the field at the given point, and v is a unit vector 
directed from the centre of curvature to this point. 

The case where the particle also has a longitudinal velocity vjt (along n) reduces to the previous case if 
we go over to a reference frame which is rotating about the instantaneous centre of curvature of the force 
line (which is the trajectory of the guiding centre) with angular velocity vj/p. In this reference system the 
particle has no longitudinal velocity, but there is an additional transverse force, the centrifugal force 

mifilp. Thus the total transverse force is 

This force is equivalent to a constant electric field of strength f Je. According to (22.4) it causes a drift 
of the guiding center of the orbit with a velocity 

The sign of this velocity depends on the sign of the charge. 

§ 23. The electromagnetic field tensor 

In § 17, we derived the equation of motion of a charge in a field, starting from the 

Lagrangian (16.4) written in three-dimensional form. We now derive the same equation 

directly from the action (16.1) written in four-dimensional notation. 

The principle of least action states 

SS = S J ^-mcds - ^ Aidx' j = 0. (23.1) 

Noting that ds = yJdxtdx', we find (the limits of integration a and b are omitted for 

brevity): 

SS = - J ~AjdSx' + ^SAidx' j = 0. 

We integrate the first two terms in the integrand by parts. Also, in the first term we set dx(f 

ds = uh where are the components of the four-velocity. Then 

J | mcduj Sx‘ + 6x‘ dA, - ^ SA, dx‘ j - ^ mcuj + ^Ai^Sx' j = 0. (23.2) 

The second term in this equation is zero, since the integral is varied with fixed coordinate 

values at the limits. Furthermore; 
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and therefore 
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J ^mcdutSx1 + -8xidxk - dx'5xk j = 0. 

In the first term we write dut = (dujds) ds, in the second and third, dxl - u'ds. In addition, 

in the third term we interchange the indices i and k (this changes nothing since the indices 

i and k are summed over). Then 

j[mcTk-‘c (f^-0]"1]^*'0' 
In view of the arbitrariness of Sx*, it follows that the integrand is zero, that is. 

We now introduce the notion 

(23-3) 

The antisymmetric tensor Fik is called the electromagnetic field tensor. The equation of 

motion then takes the form: 

du‘ e j?ik 
c-r- = — Fkuk. 

ds c 
(23.4) 

These are the equations of motion of a charge in four-dimensional form. 

The meaning of the individual components of the tensor Fik is easily seen by substituting 

the values A, = ((j), - A) in the definition (23.3). The result can be written as a matrix in which 

the index i = 0, 1, 2, 3 labels the rows, and the index k the columns: 

f o Ex Ey Ez' ' 0 -Ex -Ey -Ez" 

-Ex 0 -H, Hy Ex 0 -Hz Hy 
Fik = 

-Ey Hz 0 -Hx Ey Hz 0 -Hx 

-ez -Hy Hx 0> yEz -Hy Hx 0> 

More briefly, we can write (see § 6): 

Fik = (E, H), Fik = (-E, H). 

Thus the components of the electric and magnetic field strengths are components of the 

same electromagnetic field four-tensor. 

Changing to three-dimensional notation, it is easy to verify that the three space components 

(i = 1, 2, 3) of (23.4) are identical with the vector equation of motion (17.5), while the time 

component (/' = 0) gives the work equation (17.7). The latter is a consequence of the 

equations of motion; the fact that only three of the four equations are independent can also 

easily be found directly by multiplying both sides of (23.4) by u‘. Then the left side of the 

equation vanishes because of the orthogonality of the four-vectors ul and dutlds, while the 

right side vanishes because of the antisymmetry of Fik. 
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If we admit only possible trajectories when we vary S, the first term in (23.2) vanishes 

identically. Then the second term, in which the upper limit is considered as variable, gives 

the differential of the action as a function of the coordinates. Thus 

Then 

S - - ^ mciij + ~ Aj j<5x'. (23.6) 

dS e e 
—77 = mciij + = pi + - Aj. (23.7) 

dx' c c 

The four-vector - SS/chc1 is the four-vector P, of the generalized momentum of the particle. 

Substituting the values of the components p, and Ah we find that 

pi = ^gjg + e<P, p + fA^j. (23.8) 

As expected, the space components of the four-vector form the three-dimensional generalized 

momentum vector (16.5), while the time component is <‘lc, where cfis the total energy of the 

charge in the field. 

§ 24. Lorentz transformation of the field 

In this section we find the transformation formulas for fields, that is, formulas by means 

of which we can determine the field in one inertial system of reference, knowing the same 

field in another system. 

The formulas for transformation of the potentials are obtained directly from the general 

formulas for transformation of four-vectors (6.1). Remembering that A1 - (0, A), we get 

easily 

The transformation formulas for an antisymmetric second-rank tensor (like Fik) were 

found in problem 2 of § 6: the components P23 and P01 do not change, while the components 

P02, P03, and P12, P13 transform like x° and x1, respectively. Expressing the components of 

F,k in terms of the components of the fields E and H, according to (23.5), we then find the 

following formulas of transformation for the electric field: 

Ex (24.2) 

and for the magnetic field: 
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Thus the electric and magnetic fields, like the majority of physical quantities, are relative; 

that is, their properties are different in different reference systems. In particular, the electric 

or the magnetic field can be equal to zero in one reference system and at the same time be 

present in another system. 

The formulas (24.2), (24.3) simplify considerably for the case V « c. To terms of order 

V7c, we have: 

Ex =E'X,E, =E' + - HUE, = E' - ~H'y; 
jt * y y c ' z c 

HX=H'X, Hv =H’~ -EUH, = H: + -E'y. 

These formulas can be written in vector form 

E = E' + — H' x V, H = H' - — E' x V. (24.4) 
c c 

The formulas for the inverse transformation from K' to K are obtained directly from 

(24.2)-(24.4) by changing the sign of V and shifting the prime. 

If the magnetic field H' = 0 in the K’ system, then, as we easily verify on the basis of (24.2) 

and (24.3), the following relation exists between the electric and magnetic fields in the K 

system: 

H = - V x E. (24.5) 
c 

If in the K! system, E' = 0, then in the K system 

E = - -V x H. (24.6) 
C 

Consequently, in both cases, in the K system the magnetic and electric fields are mutually 

perpendicular. 
These formulas also have a significance when used in the reverse direction: if the fields 

E and H are mutually perpendicular (but not equal in magnitude) in some reference system 

K, then there exists a reference system K' in which the field is pure electric or pure magnetic. 

The velocity V of this system (relative to K) is perpendicular to E and H and equal in 

magnitude to cHIE in the first case (where we must have H <E) and to cEIH in the second 

case (where E < H). 

§ 25. Invariants of the field 

From the electric and magnetic field intensities we can form invariant quantities, which 

remain unchanged in the transition from one inertial reference system to another. 

The form of these invariants is easily found starting from the four-dimensional representation 

of the field using the antisymmetric four-tensor F,k. It is obvious that we can form the 

following invariant quantities from the components of this tensor: 

FikF* = inv, (25.1) 

eik,mFikFlm = inv, (25.2) 

where eiklm is the completely antisymmetric unit tensor of the fourth rank (cf. § 6). The first 
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quantity is a scalar, while the second is a pseudoscalar (the product of the tensor Fik with its 

dual tensor, t 

Expressing Fik in terms of the components of E and H using (23.5), it is easily shown that, 

in three-dimensional form, these invariants have the form: 

H2-E2 = inv, (25.3) 

E • H = inv. (25.4) 

The pseudoscalar character of the second of these is here apparent from the fact that it is the 

product of the polar vector E with the axial vector H (whereas its square (E • H)2 is a true 

scalar). 

From the invariance of the two expressions presented, we get the following theorems. If 

the electric and magnetic fields are mutually perpendicular in any reference system, that is, 

E • H = 0, then they are also perpendicular in every other inertial reference system. If the 

absolute values of E and H are equal to each other in any reference system, then they are the 

same in any other system. 

The following inequalities are also clearly valid. If in any reference system E > H (or H 

> E), then in every other system we will have E > H (or H > E). If in any system of reference 

the vectors E and H make an acute (or obtuse) angle, then they will make an acute (or 

obtuse) angle in every other reference system. 

By means of a Lorentz transformation we can always give E and H any arbitrary values, 

subject only to the condition that E2 - H2 and E • H have fixed values. In particular, we can 

always find an inertial system in which the electric and magnetic fields are parallel to each 

other at a given point. In this system E • H = EH, and from the two equations 

E2 -H2 =E2 -Hi, EH = E0-H0. 

we can find the values of E and H in this system of reference (E0 and H0 are the electric and 

magnetic fields in the original system of reference). 

The case where both invariants are zero is excluded. In this case, E and H are equal and 

mutually perpendicular in all reference systems. 

If E - H = 0, then we can always find a reference system in which E = 0 or H = 0 

(according as E2 - H2 < or > 0), that is, the field is purely magnetic or purely electric. 

Conversely, if in any reference system E = 0 or H = 0, then they are mutually perpendicular 

in every other system, in accordance with the statement at the end of the preceding section. 

We shall give still another approach to the problem of finding the invariants of an 

antisymmetric four-tensor. From this method we shall, in particular, see that (25.3)-(25.4) 

are actually the only two independent invariants and at the same time we will explain some 

instructive mathematical properties of the Lorentz transformations when applied to such a 

four-tensor. 

Let us consider the complex vector 

F = E + iH. (25.5) 

t We also note that the pseudoscalar (25.2) can also be expressed as a four-divergence: 

as can be easily verified by using the antisymmetry of eMm. 
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Using formulas (24.2)-(24.3), it is easy to see that a Lorentz transformation (along the x 

axis) for this vector has the form 

Fx = F', Fy - F' cosh 0 - iF' sinh 0 = F' cos i(j) - F' sin i(p. 

Fz = Ft cos i<j> + Ft sin i<p, tanh 0 = (25.6) 

We see that a rotation in the x, t plane in four-space (which is what this Lorentz transformation 

is) for the vector F is equivalent to a rotation in the y, z plane through an imaginary angle 

in three-dimensional space. The set of all possible rotations in four-space (including also the 

simple rotations around the x, y, and z, axes) is equivalent to the set of all possible rotations, 

through complex angles in three-dimensional space (where the six angles of rotation in four- 

space correspond to the three complex angles of rotation of the three-dimensional system). 

The only invariant of a vector with respect to rotation is its square: F2 - E2 - H2 + 

2i E ■ H; thus the real quantities E2 - FI2 and E • H are the only two independent invariants 

of the tensor Fik. 

If F2 E 0, the vector F can be written as F = an, where n is a complex unit vector (n2 = 

1). By a suitable complex rotation we can point n along one of the coordinate axes; it is clear 

that then n becomes real and determines the directions of the two vectors E and H : F = (E 

+ IFF)n; in other words we get the result that E and H become parallel to one another. 

PROBLEM 

Determine the velocity of the system of reference in which the electric and magnetic fields are parallel. 

Solution: Systems of reference K\ satisfying the required condition, exist in infinite numbers. If we have 
found one such, then the same property will be had by any other system moving relative to the first with 
its velocity directed along the common direction of E and H. Therefore it is sufficient to find one of these 
systems which has a velocity perpendicular to both fields. Choosing the direction of the velocity as the x 
axis, and making use of the fact that in K'\ E' = H', = 0, E'H' - E’zH’y = 0, we obtain with the aid of 
formulas (24.2) and (24.3) for the velocity V of the K' system relative to the original system the following 

equation: 

y 
__c__ _ _E_x_H_ 

1 + Vi E2+H2 
c2 

(we must choose that root of the quadratic equation for which V < c). 



CHAPTER 4 

THE ELECTROMAGNETIC FIELD EQUATIONS 

§ 26. The first pair of Maxwell’s equations 

From the expressions 

H = curl A, E = - - grad <p 

it is easy to obtain equations containing only E and H. To do this we find curl E: 

curl E = - ~ curl A - curl grad tp. 

But the curl of any gradient is zero. Consequently, 

curi E = - (26.1) 

Taking the divergence of both sides of the equation curl A = H, and recalling that div curl 

= 0, we find 

div H = 0. (26.2) 

The equations (26.1) and (26.2) are called the first pair of Maxwell’s equations.-)- We note 

that these two equations still do not completely determine the properties of the fields. This 

is clear from the fact that they determine the change of the magnetic field with time (the 

derivative dHIdt), but do not determine the derivative dE/dt. 

Equations (26.1) and (26.2) can be written in integral form. According to Gauss’theorem 

| div HdV = (j) H • df, 

where the integral on the right goes over the entire closed surface surrounding the volume 

over which the integral on the left is extended. On the basis of (26.2), we have 

| H • df = 0. (26.3) 

t Maxwell’s equations (the fundamental equations of electrodynamics) were first formulated by him in 
the 1860’s. 

70 
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The integral of a vector over a surface is called the flux of the vector through the surface. 

Thus the flux of the magnetic field through every closed surface is zero. 

According to Stokes’ theorem. 

J curl E • df = j) E • dl, 

where the integral on the right is taken over the closed contour bounding the surface over 

which the left side is integrated. From (26.1) we find, integrating both sides for any surface. 

| E . dl = H • df. (26.4) 

The integral of a vector over a closed contour is called the circulation of the vector around 

the contour. The circulation of the electric field is also called the electromotive force in the 

given contour. Thus the electromotive force in any contour is equal to minus the time 

derivative of the magnetic flux through a surface bounded by this contour. 

The Maxwell equations (26.1) and (26.2) can be expressed in four-dimensional notation. 

Using the definition of the electromagnetic field tensor 

Fik = c)Ak!dxl - DAJdxK 

it is easy to verify that 

dFik dFk, dFu 

dx' dx‘ dxk 
= 0. (26.5) 

The expression on the left is a tensor of third rank, which is antisymmetric in all three 

indices. The only components which are not identically zero are those with i*k*l. Thus 

there are altogether four different equations which we can easily show [by substituting from 

(23.5)] coincide with equations (26.1) and (26.2). 

We can construct the four-vector which is dual to this antisymmetric four-tensor of rank 

three by multiplying the tensor by eiklm and contracting on three pairs of indices (see § 6). 

Thus (26.5) can be written in the form 

= 0, (26.6) 
dxk 

which shows explicitly that there are only four independent equations. 

§ 27. The action function of the electromagnetic field 

The action function 5 for the whole system, consisting of an electromagnetic field as well 

as the particles located in it, must consist of three parts: 

S = Sf+ Sm + Smf, (27.1) 

where Sm is that part of the action which depends only on the properties of the particles, that 

is, just the action for free particles. For a single free particle, it is given by (8.1). If there are 

several particles, then their total action is the sum of the actions for each of the individual 

particles. Thus, 

Sm = -Imc I ds. (27.2) 
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The quantity Smf is that part of the action which depends on the interaction between the 

particles and the field. According to § 16, we have for a system of particles: 

s>»f = ~ ^ j Akdxk. (27.3) 

In each term of this sum, Ak is the potential of the field at that point of specetime at which 

the corresponding particle is located. The sum Sm + Sm/is already familiar to us as the action 
(16.1) for charges in a field. 

Finally 5/is that part of the action which depends only on the properties of the field itself, 

that is, Sf is the action for a field in the absence of charges. Up to now, because we were 

interested only in the motion of charges in a given electromagnetic field, the quantity Sf, 

which does not depend on the particles, did not concern us, since this term cannot affect the 

motion of the particles. Nevertheless this term is necessary when we want to find equations 

determining the field itself. This corresponds to the fact that from the parts Sm + Sm/of the 

action we found only two equations for the field, (26.1) and (26.2), which are not yet 
sufficient for complete determination of the field. 

To establish the form of the action Sf for the field, we start from the following very 

important property of electromagnetic fields. As experiment shows, the electromagnetic 

field satisfies the so-called principle of superposition. This principle consists in the statement 

that the field produced by a system of charges is the result of a simple composition of the 

fields produced by each of the particles individually. This means that the resultant field 

intensity at each point is equal to the vector sum of the individual field intensities at that 
point. 

Every solution of the field equations gives a field that can exist in nature. According to the 

principle of superposition, the sum of any such fields must be a field that can exist in nature, 
that is, must satisfy the field equations. 

As is well known, linear differential equations have just this property, that the sum of any 

solutions is also a solution. Consequently the field equations must be linear differential 
equations. 

From the discussion, it follows that under the integral sign for the action Sf there must 

stand an expression quadratic in the field. Only in this case will the field equations be linear; 

the field equations are obtained by varying the action, and in the variation the degree of the 

expression under the integral sign decreases by unity. 

The potentials cannot enter into the expression for the action Sf, since they are not uniquely 

determined (in Smf this lack of uniqueness was not important). Therefore Sf must be the 

integral of some function of the electromagnetic field tensor Fik. But the action must be a 

scalar and must therefore be the integral of some scalar. The only such quantity is the 
product FikFlk. + 

t The function in the integrand of Sf must not include derivatives of Fih since the Lagrangian can contain 
aside from the coordinates, only their first time derivatives. The role of “coordinates” (i.e., parameters to 
be varied in the principle of least action) is in this case played by the field potential Ak\ this is analogous 
to the situation in mechanics where the Lagrangian of a mechanical system contains only the coordinates 
of the particles and their first time derivatives. 

As for the quantity e'klmFikFlm (§ 25), as pointed out in the footnote on p. 68, it is a complete four- 
divergence, so that adding it to the integrand in Sf would have no effect on the “equations of motion”. It is 
interesting that this quantity is already excluded from the action for a reason independent of the fact that it 
is a pseudoscalar and not a true scalar. 
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Thus Sf must have the form: 

73 

= a J J Fik FikdVdt, dV = dx dy dz, 

where the integral extends over all of space and the time between two given moments; a is 

some constant. Under the integral stands FikFlk - 2{H2 - E2). The field E contains the 

derivative dA/df, but it is easy to see that (dAJdt)2 must appear in the action with the positive 

sign (and therefore E2 must have a positive sign). For if (dA/dt)2 appeared in Sf with a minus 

sign, then sufficiently rapid change of the potential with time (in the time interval under 

consideration) could always make Sf a negative quantity with arbitrarily large absolute 

value. Consequently Sf could not have a minimum, as is required by the principle of least 

action. Thus, a must be negative. 
The numerical value of a depends on the choice of units for measurement of the field. We 

note that after the choice of a definite value for a and for the units of measurement of field, 

the units for measurement of all other electromagnetic quantities are determined. 

From now on we shall use the Gaussian system of units; in this system a is a dimensionless 

quantity, equal to —(1/16/r).t 

Thus the action for the field has the form 

S, =--— f FikFikdQ., dQ. - c dt dx dy dz. (27.4) 
1 \6jtC J 

In three-dimensional form: 

S/=_L jV_ H2 )dVdt. (27.5) 

In other words, the Lagrangian for the field is 

Lf = ^r J (£2 -n2)dv- (27’6) 
The action for field plus particles has the form 

S = - zj mcds - X J ^Akdxk - J fikF,kdQ.. (TJ.l) 

We emphasize that now the charges are not assumed to be small, as in the derivation of the 

equation of motion of a charge in a given field. Therefore Ak and Fik refer to the actual field, 

that is, the external field plus the field produced by the particles themselves; Ak and Fik now 

depend on the positions and velocities of the charges. 

§ 28. The four-dimensional current vector 

Instead of treating charges as points, for mathematical convenience we frequently consider 

them to be distributed continuously in space. Then we can introduce the “charge density Q 

t In addition to the Gaussian system, one also uses the Heaviside system, in which a- 4. In this 

system of units the field equations have a more convenient form (4k does not appear) but on the other hand, 
n appears in the Coulomb law. Conversely, in the Gaussian system the field equations contain 4n, but the 

Coulomb law has a simple form. 
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such that QdV is the charge contained in the volume dV. The density Q is in general a 

function of the coordinates and the time. The integral of Q over a certain volume is the 
charge contained in that volume. 

Here we must remember that charges are actually pointlike, so that the density Q is zero 

everywhere except at points where the point charges are located, and the integral J QdV must 

be equal to the sum of the charges contained in the given volume. Therefore Q can be 

expressed with the help of the ^-function in the following formf: 

e = Zea8( r-ra) (28.1) 

where the sum goes over all the charges and ra is the radius vector of the charge eu. 

The charge on a particle is, from its very definition, an invariant quantity, that is, it does 

not depend on the choice of reference system. On the other hand, the density Q is not 
generally an invariant—only the product QdV is invariant. 

Multiplying the equality de = QdV on both sides with dxL. 

de dx‘ = QdVdx‘ = QdVdt 
at 

t The 5-function S(x) is defined as follows: S(x) = 0, for all nonzero values of x; for x = 0, 5(0) = °°, in 
such a way that the integral 

J 8(x)dx = 1. 

From this definition there result the following properties: if /(a) is any continuous function, then 

and in particular. 

1 f(x)8(x-a)dx=f(a). (II) 

J /(a)5(a) dx = f(0). (III) 

< The limits of integration, it is understood, need not be ± the range of integration can be arbitrary, 
provided it includes the point at which the 5-function does not vanish.) 

The meaning of the following equalities is that the left and right sides give the same result when 
introduced as factors under an integral sign: 

5(-x) = 5(a), 5(ax) = j2~|£(*)- (IV) 

The last equality is a special case of the more general relation 

= 00 

where 0(a) is a single-valued function (whose inverse need not be single-valued) and the a are the roots of 
the equation 0(a) = 0. ' 

Just as 5(a) was defined for one variable a, we can introduce a three-dimensional 5-function, 5(r), equal 
to zero everywhere except at the origin of the three-dimensional coordinate system, and whose integral 
overall space is unity. As such a function we can clearly use the product 5(a) 5(y) 5(z). 
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On the left stands a four-vector (since de is a scalar and dxl is a four-vector). This means that 

the right side must be a four-vector. But dV dt is a scalar, and so Q(dx'ldt) is a four-vector. 

This vector (we denote it by /) is called the current four-vector: 

(28.2) 

The space components of this vector form the current density vector, 

j = Q\, (28.3) 

where v is the velocity of the charge at the given point. The time component of the four- 

vector (28.2) is cQ. Thus 

j‘ = ifiQ, j). (28.4) 

The total charge present in all of space is equal to the integral J QdV over all space. We can 

write this integral in four-dimensional form: 

J QdV=^ fdV=±j j'dSj, (28.5) 

where the integral is taken over the entire four-dimensional hyperplane perpendicular to the 

a0 axis (clearly this integration means integration over the whole three-dimensional space). 

Generally, the integral 

over an arbitrary hypersurface is the sum of the charges whose world lines pass through this 

surface. 
Let us introduce the current four-vector into the expression (27.7) for the action and 

transform the second term in that expression. Introducing in place of the point charges e a 

continuous distribution of charge with density Q, we must write this term as 

QAjdx'dV, 

replacing the sum over the charges by an integral over the whole volume. Rewriting in the 

form 

--f Q^-AidVdt, 
cj^dt' 

we see that this term is equal to 

Thus the action 5 takes the form 

5 = -X J me ds - ± J A JdQ. - J FikFikd£l. (28.6) 
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§ 29. The equation of continuity 

The change with time of the charge contained in a certain volume is determined by the 

derivative 

On the other hand, the change in unit time, say, is determined by the quantity of charge 

which in unit time leaves the volume and goes to the outside or, conversely, passes to its 

interior. The quantity of charge which passes in unit time through the element df of the 

surface bounding our volume is equal to Q\ ■ df, where v is the velocity of the charge at the 

point in space where the element df is located. The vector df is directed, as always, along the 

external normal to the surface, that is, along the normal toward the outside of the volume 

under consideration. Therefore £v • df is positive if charge leaves the volume, and negative 

if charge enters the volume. The total amount of charge leaving the given volume per unit 

time is consequently j Qv ■ df, where the integral extends over the whole of the closed 

surface bounding the volume. 

From the equality of these two expressions, we get 

J QdV=- | df. (29.1) 

The minus sign appears on the right, since the left side is positive if the total charge in the 

given volume increases. The equation (29.1) is the so-called equation of continuity, expressing 

the conservation of charge in integral form. Noting that Q\ is the current density, we can 

rewrite (29.1) in the form 

j edV=-jj df. (29.2) 

We also write this equation in differential form. To do this we apply Gauss’ theorem to 

(29.2): 

j) j • df = J div j dV. 

and we find 

J (divj+f)'l'=a 
Since this must hold for integration over an arbitrary volume, the integrand must be zero: 

dp 
divj + -^ = 0. (29.3) 

This is the equation of continuity in differential form. 

It is easy to check that the expression (28.1) for Q in ^-function form automatically 

satisfies the equation (29.3). For simplicity we assume that we have altogether only one 

charge, so that 

Q = ed(r - r0). 
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The current j is then 
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j = ex S(r - r0), 

where v is the velocity of the charge. We determine the derivative dQ/dt. During the motion 

of the charge its coordinates change, that is, the vector r0 changes. Therefore 

dg _ dg dr0 

dt ~ <9r„ dt ' 

But dr0/dt is just the velocity v of the charge. Furthermore, since £ is a function of r - r0, 

dg dg 

dr0 dr 

Consequently 

^ = - v • grad Q = -div(gv) 
dt 

(the velocity v of the charge of course does not depend on r). Thus we arrive at the equation 

(29.3). 
It is easily verified that, in four-dimensional form, the continuity equation (29.3) is expressed 

by the statement that the four-divergence of the current four-vector is zero: 

In the preceding section we saw that the total charge present in all of space can be written 

as 

where the integration is extended over the hyperplane x° = const. At each moment of time, 

the total charge is given by such an integral taken over a different hyperplane perpendicular 

to the x° axis. It is easy to verify that the equation (29.4) actually leads to conservation of 

charge, that is, to the result that the integral J j'dS, is the same no matter what hyperplane x° 

= const we integrate over. The difference between the integrals J j'dS, taken over two such 

hyperplanes can be written in the form j ydS,, where the integral is taken over the whole 

closed hypersurface surrounding the four-volume between the two hyperplanes under 

consideration (this integral differs from the required integral because of the presence of the 

integral over the infinitely distant “sides” of the hypersurface which, however, drop out, 

since there are no charges at infinity). Using Gauss’ theorem (6.15) we can transform this to 

an integral over the four-volume between the two hyperplanes and verify that 

| ydSt = J |£-dQ = 0. (29.5) 

The proof presented clearly remains valid also for any two integrals J/dS,, in which the 

integration is extended over any two infinite hypersurfaces (and not just the hyperplanes x° 

= const) which each contain all of three-dimensional space. From this it follows that the 

integral 
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is actually identical in value (and equal to the total charge in space) no matter over what such 
hypersurface the integration is taken. 

We have already mentioned (see the footnote on p. 53) the close connection between the 

gauge invariance of the equations of electrodynamics and the law of conservation of charge. 

Let us show this once again using the expression for the action in the form (28.6). On 
replacing A( by At -(df/dx‘), the integral 

1 i j‘ ~dn 

is added to the second term in this expression. It is precisely the conservation of charge, as 

expressed in the continuity equation (29.4), that enables us to write the integrand as a four- 

divergence d(ff)/dx‘, after which, using Gauss’ theorem, the integral over the four-volume 

is transformed into an integral over the bounding hypersurface; on varying the action, these 

integrals drop out and thus have no effect on the equations on motion. 

§ 30. The second pair of Maxwell equations 

In finding the field equations with the aid of the principle of least action we must assume 

the motion of the charges to be given and vary only the potentials (which serve as the 

“coordinates” of the system); on the other hand, to find the equations of motion we assumed 

the field to be given and varied the trajectory of the particle. 

Therefore the variation of the first term in (28.6) is zero, and in the second we must not 
vary the current /. Thus, 

M = ?{;•'"W' + 5F',^}‘'£2 = 0' 
(where we have used the fact that Fik8Fik = FikdFik). Substituting Fik = dAk!dxl - dAJd^ we 
have 

In the second term we interchange the indices i and k, over which the expressions are 

summed, and in addition replace Fik by -Fik. Then we obtain 

The second of these integrals we integrate by parts, that is, we apply Gauss’ theorem: 

OW'D 

In the second term we must insert the values at the limits of integration. The limits for the 

coordinates are at infinity, where the field is zero. At the limits of the time integration, that 

is, at the given initial and final time values, the variation of the potentials is zero, since in 
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accord with the principle of least action the potentials are given at these times. Thus the 

second term in (30.1) is zero, and we find 

j(^ + 5F^h“-a 
Since according to the principle of least action, the variations <5/4, are arbitrary, the coefficients 

of the <5A, must be set equal to zero: 

dFik _ An_ 

dxk ~ ~ c 1 ' 
(30.2) 

Let us express these four (i = 0, 1, 2, 3) equations in three-dimensional form. For i — 1: 

dFn dF12 dF13 i dFw = 4n 

dx + dy + dz + c dt c J 

Substituting the values for the components of Flk, we find 

dHz dHy j dEx _ 47T . 

dy dz c dt c Jx 

This together with the two succeeding equations (i = 2, 3) can be written as one vector 

equation: 

curlH = !^ + ^j. (30.3) 
c dt C 

Finally, the fourth equation (i = 0) gives 

div E = 4nQ. (30.4) 

Equations (30.3) and (30.4) are the second pair of Maxwell equations.! Together with the 

first pair of Maxwell equations they completely determine the electromagnetic field, and are 

the fundamental equations of the theory of such fields, i.e. of electrodynamics. 

Let us write these equations in integral form. Integrating (30.4) over a volume and applying 

Gauss’ theorem 

J div E dV = (j) E • dt. 

we get 

j)E dt = 4nj QdV. (30.5) 

Thus the flux of the electric field through a closed surface is equal to An times the total 

charge contained in the volume bounded by the surface. 

Integrating (30.3) over an open surface and applying Stokes’ theorem 

f The Maxwell equations in a form applicable to point charges in the electromagnetic field in vacuum 

were formulated by H. A. Lorentz. 
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we find 

J curlH di = H • d\. 

j H 'dl=cft JE Jf + ~ (30.6) 

The quantity 

1 dE 

Andt 
(30.7) 

is called the “displacement current”. From (30.6) written in the form 

= + <30.8) 

we see that the circulation of the magnetic field around any contour is equal to Ante times 

the sum of the true current and displacement current passing through a surface bounded by 

this contour. 

From the Maxwell equations we can obtain the already familiar continuity equation (29.3). 

Taking the divergence of both sides of (30.3), we find 

div curl H = div E + — div j. 
cdt c 3 

But div curl H = 0 and div E = AitQ, according to (30.4). Thus we arrive once more at 

equation (29.3). In four-dimensional form, from (30.2), we have: 

r)2 Fik _ An dr 

dx‘dxk c dx‘ ' 

But when the operator cPldx'dxl", which is symmetric in the indices i and k, is applied to the 

antisymmetric tensor Flk, it gives zero identically and we arrive at the continuity equation 

(29.4) expressed in four-dimensional form. 

§ 31. Energy density and energy flux 

Let us multiply both sides of (30.3) by E and both sides of (26.1) by H and combine the 

resultant equations. Then we get 

7 E • -5- + — H - -5- = - — j • E -(H • curl E - E ■ curl H). 
c at c at c 

Using the well-known formula of vector analysis, 

div (a x b) = b • curl a - a • curl b, 

we rewrite this relation in the form 

±j-t(E2+H2) = -^- j-E-div(ExH) 
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or 

The vector 

JL\ 
r)t 

= - j • E - div S. 

S = fExH 

(31.1) 

(31.2) 

is called the Poynting vector. 
We integrate (31.1) over a volume and apply Gauss’ theorem to the second term on the 

right. Then we obtain 

jiizge-n-lt-w-j*-*- 01.3) 

If the integral extends over all space, then the surface integral vanishes (the field is zero 

at infinity). Furthermore, we can express the integral J j • EdV as a sum X e\ - E over all the 

charges, and substitute from (17.7): 

Then (31.3) becomes 

■s{J£TFe-n, + I^}-0- <3'-4) 
Thus for the closed system consisting of the electromagnetic field and particles present in 

it, the quantity in brackets in this equation is conserved. The second term in this expression 

is the kinetic energy (including the rest energy of all the particles; see the footnote on p. 51), 

the first term is consequently the energy of the field itself. We can therefore call the quantity 

W= £2 +H2 (31.5) 

the energy density of the electromagnetic field; it is the energy per unit volume of the field. 

If we integrate over any finite volume, then the surface integral in (31.3) generally does 

not vanish, so that we can write the equation in the form 

^ <31-6) 

where now the second term in the brackets is summed only over the particles present in the 

volume under consideration. On the left stands the change in the total energy of field and 

particles per unit time. Therefore the integral | S • df must be interpreted as the flux of field 

energy across the surface bounding the given volume, so that the Poynting vector S is this 

flux density—the amount of field energy passing through unit area of the surface in unit 

time.! 

t We assume that at the given moment there are no charges on the surface itself. If this were not the case, 
then on the right we would have to include the energy flux transported by particles passing through the 

surface. 
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§ 32. The energy-momentum tensor 

In the preceding section we derived an expression for the energy of the electromagnetic 

field. Now we derive this expression, together with one for the field momentum, in four¬ 

dimensional form. In doing this we shall for simplicity consider for the present an 

electromagnetic field without charges. Having in mind later applications (to the gravitational 

field), and also to simplify the calculation, we present the derivation in a general form, not 

specializing the nature of the system. So we consider any system whose action integral has 

the form 

S = J A[9’ltr)dVdt= c J Adn’ (32.1) 

where A is some function of the quantities q, describing the state of the system, and of their 

first derivatives with respect to coordinates and time (for the electromagnetic field the 

components of the four-potential are the quantities q)\ for brevity we write here only one of 

the q’s. We note that the space integral J A dV is the Lagrangian of the system, so that A can 

be considered as the Lagrangian “density”. The mathematical expression of the fact that the 

system is closed is the absence of any explicit dependence of A on the jc', similarly to the 

situation for a closed system in mechanics, where the Lagrangian does not depend explicitly 

on the time. 

The “equations of motion” (i.e. the field equations, if we are dealing with some field) are 

obtained in accordance with the principle of least action by varying S. We have (for brevity 

we write qn = dq/dx'). 

The second term in the integrand, after transformation by Gauss’ theorem, vanishes upon 

integration over all space, and we then find the following “equations of motion”: 

d dA dA 

dx‘ dq,i dq 
(32.2) 

(it is, of course, understood that we sum over any repeated index). 

The remainder of the derivation is similar to the procedure in mechanics for deriving the 

conservation of energy. Namely, we write: 

dA _ dA dq dA dq,k 

dx‘ dq dx‘ dq,k dx‘ 

Substituting (32.2) and noting that q k i = q i k, we find 

dA _ d ( dA \ dA dqu _ d f dA 'j 

dx‘ ~ dxk {dq* + d^dS~ ~dq7j 

On the other hand, we can write 
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dh _ ~k dh 

d7 ~ ' d^’ 

so that, introducing the notation 

we can express the relation in the form 

dTk 

IbS 
0. 

(32.3) 

(32.4) 

We note that if there is not one but several quantities q(l>, then in place of (32.3) we must 

write 

(32.5) 

°<l,k 

But in § 29 we saw that an equation of the form dAk/dxk - 0, i.e. the vanishing of the four- 

divergence of a vector, is equivalent to the statement that the integral J AkdSk of the vector 

over a hypersurface which contains all of three-dimensional space is conserved. It is clear 

that an analogous result holds for the divergence of a tensor; the equation (32.4) asserts that 

the vector P‘ = const J Tk dSk is conserved. 

This vector must be identified with the four-vector of momentum of the system. We 

choose the constant factor in front of the integral so that, in accord with our previous 

definition, the time component P{) is equal to the energy of the system multiplied by 1/c. To 

do this we note that 

P° = const J TokdSk = const | T°°dV 

if the integration is extended over the hyperplane x° = const. On the other hand, according 

to (32.3), 

TOO • dh 
f A. 

dq 

Comparing with the usual formulas relating the energy and the Lagrangian, we see that 

this quantity must be considered as the energy density of the system, and therefore J T°°dV 

is the total energy of the system. Thus we must set const = 1/c, and we get finally for the 

four-momentum of the system the expression 

pi =l^TUldSk. (32.6) 

The tensor Tlk is called the energy-momentum tensor of the system. 

It is necessary to point out that the definition of the tensor T,k is not unique. In fact, if T‘k 

is defined by (32.3), then any other tensor of the form 

T‘k + ^ \f/ik^ y/‘k* = — \f/^k 
dx1 

(32.7) 
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will also satisfy equation (32.4), since we have identically B1\j/klldxkdxl = 0. The total four- 

momentum of the system does not change, since according to (6.17) we can write 

where the integration on the right side of the equation is extended over the (ordinary) surface 

which “bounds” the hypersurface over which the integration on the left is taken. This 

surface is clearly located at infinity in the three-dimensional space, and since neither field 

nor particles are present at infinity this integral is zero. Thus the four-momentum of the 

system is, as it must be, a uniquely determined quantity. To define the tensor 71* uniquely we 

can use the requirement that the four-tensor of angular momentum (see § 14) of the system 

be expressed in terms of the four-momentum by 

Mik = J (x‘dPk - XkdP‘) = i J (*,'rH - xkr')dS,, (32.8) 

that is its “density” is expressed in terms of the “density” of momentum by the usual 

formula. 

It is easy to determine what conditions the energy-momentum tensor must satisfy in order 

that this be valid. We note that the law of conservation of angular momentum can be 

expressed, as we already know, by setting equal to zero the divergence of the expression 

under the integral sign in M,k. Thus 

xlTkl - xkTa) = 0. (32.9) 
dx‘ 

Noting that dx'/dx1 = S} and that dTk,ldxl - 0, we find from this 

SjTkl - 8kTa = Tki - Tik = 0 

or 

Tik = Tki, (32.10) 

that is, the energy-momentum tensor must be symmetric. 

We note that T'k, defined by formula (32.5), is generally speaking not symmetric, but can 

be made so by transformation (32.7) with suitable y/kl. Later on (§ 94) we shall see that there 

is a direct method for obtaining a symmetric tensor Ttk. 

As we mentioned above, if we carry out the integration in (32.6) over the hyperplane x° 

= const., then P' takes on the form 

P'=l|r,0dV, (32.11) 

where the integration extends over the whole (three-dimensional) space. The space components 

of P‘ form the three-dimensional momentum vector of the system and the time component 

is its energy multiplied by 1/c. Thus the vector with components 

may be called the “momentum density”, and the quantity 
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W= T 00 

the “energy density”. 

To clarify the meaning of the remaining components of T,k, we separate the conservation 

equation (32.4) into space and time parts: 

1 dT00 dT0a i dTa0 dTaP 

c dt + dxa ’ C dt + dxP 

We integrate these equations over a volume V in space. From the first equation 

(32.12) 

f T°°dV+ f ^^dV= 0 
cdt J J dxa 

or, transforming the second integral by Gauss’ theorem. 

J T°°dV = - c | T0adfa, (32.13) 

where the integral on the right is taken over the surface surrounding the volume V (dfx, dfy, 

dfz are the components of the three-vector of the surface element df). The expression on the 

left is the rate of change of the energy contained in the volume V; from this it is clear that 

the expression on the right is the amount of energy transferred across the boundary of the 

volume V, and the vector S with components 

cT01, cT02, cT03 

is its flux density—the amount of energy passing through unit surface in unit time. Thus we 

arrive at the important conclusion that the requirements of relativistic invariance, as expressed 

by the tensor character of the quantities T,k, automatically lead to a definite connection 

between the energy flux and the momentum density: the energy flux density is equal to the 

momentum density multiplied by c2. 

From the second equation in (32.12) we find similarly: 

^ J ±Ta0dV= - j) T^dfp. (32.14) 

On the left is the change of the momentum of the system in volume V per unit time, therefore 

j T'^d/p is the momentum emerging from the volume V per unit time. Thus the components 

Tof the energy-momentum tensor constitute the three-dimensional tensor of momentum 

flux density; we denote it by -oap, where oap is the stress tensor. The energy flux density 

is a vector; the density of flux of momentum, which is itself a vector, must obviously be a 

tensor (the component Tap of this tensor is the amount of the a-component of the momentum 

passing per unit time through unit surface perpendicular to the x@ axis). 

We give a table indicating the meanings of the individual components of the energy- 

momentum tensor: 

W SJc Sy/C 

Sx/C -0„ -Oxy 

Sy/C ~ (7yX -Cyy 

SJc -azx -ozy 

(32.15) 
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§ 33. Energy-momentum tensor of the electromagnetic field 

We now apply the general relations obtained in the previous section to the electromagnetic 

field. For the electromagnetic field, the quantity standing under the integral sign in (32.1) is 

equal, according to (27.4), to 

The quantities q are the components of the four-potential of the field, Ak, so that the definition 

(32.5) of the tensor Tk becomes 

dAt dA 
- 5kA. 

<(S) 
appear hei 

SA = - -LFk,SFkl = - 
$tc 8n dxk dx J 

To calculate the derivatives of A which appear here, we find the variation SA. We have 

or, interchanging indices and making use of the fact that FkI = ~Flk, 

SA = -^-Fk,S 
An 

dAj_ 

dxk 

- _ J_ pkl 
~ An ' 

or, for the contravariant components: 

ik _ _ J_ dA}_ k J_ lm 
An dxj 1 16^-^ ,m 

But this tensor is not symmetric. To symmetrize it we add the quantity 

1 rlA‘ rk 
An dx, 1 ' 

According to the field equation (30.2) in the absence of charges, dFkldx, - 0, and therefore 

Fk^J__d_(AiFu, 
An dx, ~ An dx1 ( h 

so that the change made in Tk is of the form (32.7) and is admissible. Since dAl!dx, - 
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dA'Idxi = Fu, we get finally the following expression for the energy-momentum tensor of the 

electromagnetic field: 

<330 

This tensor is obviously symmetric. In addition it has the property that 

t; = 0, (33 2) 

i.e. the sum of its diagonal terms is zero. 
Let us express the components of the tensor Tik in terms of the electric and magnetic field 

intensities. By using the values (23.5) for the components F‘k, we easily verify that the 

quantity T°° coincides with the energy density (31.5), while the components cT°a are the 

same as the components of the Poynting vector (31.2). The space components Tafi form a 

three-dimensional tensor with components 

-a „ = _L(£2 + e\ - El + Hi + Hi - Hi), 
o7l 

-axv = -J~(ExEy + HxHy), 
y 4/r y 

etc., or 

eap=^{+EaEl3+HaHl3-±Sal3(E2+H2)}. (33.3) 

This tensor is called the Maxwell strees tensor. 

To bring the tensor Tik to diagonal form, we must transform to a reference system in which 

the vectors E and H (at the given point in space and moment in time) are parallel to one 

another or where one of them is equal to zero; as we know (§ 25), such a transformation is 

always possible except when E and H are mutually perpendicular and equal in magnitude. 

It is easy to see that after the transformation the only non-zero components of T will be 

7’00 _ _ J’ll _ y^22 _ y-33 _ jy 

(the x axis has been taken along the direction of the field). 

But if the vectors E and H are mutually perpendicular and equal in magnitude, the tensor 

Tk cannot be brought to diagonal form.t The non-zero components in this case are 

jOO _ y-33 _ y30 _ jy 

(where the x axis is taken along the direction of E and the y axis along H). 

Up to now we have considered fields in the absence of charges. When charged particles 

are present, the energy-momentum tensor of the whole system is the sum of the energy- 

momentum tensors for the electromagnetic field and for the particles, where in the latter the 

particles are assumed not to interact with one another. 

To determine the form of the energy-momentum tensor of the particles we must describe 

their mass distribution in space by using a “mass density” in the same way as we describe 

t The fact that the reduction of the symmetric tensor T'k to principal axes may be impossible is related 

to the fact that the four-space is pseudo-euclidean. (See also the problem in § 94.) 
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a distribution of point charges in terms of their density. Analogously to formula (28.1) for 

the charge density, we can write the mass density in the form 

F = X ma S(r - ra), (33.4) 

where ra are the radius-vectors of the particles, and the summation extends over all the 
particles of the system. 

The “four-momentum density” of the particles is given by /tew,. We know that this density 

is the component T°a/c of the energy-momentum tensor, i.e. T°x = jic2ua(a =1,2, 3). But 

the mass density is the time component of the four-vector F/c(dxk/dt) (in analogy to the 

charge density; see § 28). Therefore the energy-momentum tensor of the system of non¬ 
interacting particles is 

dx‘ dxk . ds 
= ^C-17^T = ^CU M 717- (33.5) 

As expected, this tensor is symmetric. 

We verify by a direct computation that the energy and momentum of the system, defined 

as the sum of the energies and momenta of field and particles, are actually conserved. In 
other words we shall verify the equation 

^_(r(/)f+ r(P)f) = 0, (33.6) 

which expresses these conservation laws. 

Differentiating (33.1), we write 

lfir,.<?A, iF, 
dxk 4ny2 dx‘ dxk 

Substituting from the Maxwell equations (26.5) and (30.2), 

dF^_=An., r)Flm _ dFmi 

dxk c J ’ dx‘ ~ dx1 

dFkl 

dxk 11 

dFu 

dxm ’ 

) 

we have: 

dpnk 

dxk 
J-(_ I 
4n( 2 

r)Fmi 

2 dx1 1 

1 dFa , 

' 2 dxm 
- dF‘l pkl 47r F i11 

}x‘F -~F‘J • 

By permuting the indices, we easily show that the first three terms o 

another, and we arrive at the result: 
the right cancel one 

dT(Fk 

dxk -~Fidk. (33.7) 

Differentiating the expression (33.5) for the energy-momentum tensor of the particles gives 

dT^j 

dxk ‘ dxk 
+ Fc 

dxk diij 

dt dxk 
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The first term in this expression is zero because of the conservation of mass for non¬ 

interacting particles. In fact, the quantities fi{d/ldt) constitute the “mass current” four- 

vector, analogous to the charge current four-vector (28.2); the conservation of mass is 

expressed by equating to zero the divergence of this four-vector: 

just as the conservation of charge is expressed by equation (29.4). 

Thus we have: 

(33.8) 

dTlp)* dxk diij duj 

dt dxk ~^C~dP 

Next we use the equation of motion of the charges in the field, expressed in the four¬ 

dimensional form (23.4). 

me 
dut 

ds 
Fikuk. 

Changing to continuous distributions of charge and mass, we have, from the definitions of 

the densities fi and Q: film - Qle. We can therefore write the equation of motion in the form 

lie 
duj 

ds 
k 

diij l _. kds 

s’ 7 HA 

Thus, 

dr<*>* 

dxk 
(33.9) 

Combining this with (33.7), we find that we actually get zero, i.e. we arrive at equation (33.6). 

PROBLEM 

Find the law of transformation of the energy density, the energy flux density, and the components of the 

stress tensor under a Lorentz transformation. 

Solution: Suppose that the K' coordinate system moves relative to the K system along the x axis with 
velocity V. Applying the formulas of problem 1, § 6 to the symmetric tensor T‘k, we find: 



90 THE ELECTROMAGNETIC FIELD EQUATIONS 34 

Sy = (s; - V(j'y >, 

Cyy = Oyy , O „ = a^. , Gy, = o'y, , 

and similar formulas for Sz and oxz. 

§ 34. The virial theorem 

Since the sum of the diagonal terms of the energy-momentum tensor of the electromagnetic 

field is equal to zero, the sum TV for any system of interacting particles reduces to the trace 

of the energy-momentum tensor for the particles alone. Using (33.5), we therefore have: 

Let us rewrite this result, shifting to a summation over the particles, i.e. 
(33.4). We then get finally: 

writing ji as the sum 

We note that, according to this formula, we have for every system: 

(34.1) 

V ^ °. (34.2) 

where the equality sign holds only for the electromagnetic field without charges. 

Let us consider a closed system of charged particles carrying out a finite motion, in which 

all the quantities (coordinates, momenta) characterizing the system vary over finite ranges, f 
We average the equation 

1 dTa0 dT°P _ 

c dt dx& 

[see (32.11)] with respect to the time. The average of the derivative dTa0/dt, like the average 

of the derivative of any bounded quantity, is zero.t Therefore we get 

t Here we also assume that the electromagnetic field of the system goes to zero sufficiently rapidly at 
infinity. In specific cases this condition may require the neglect of radiation of electromagnetic waves by 
the system. 

$ Let/(r) be such a quantity. Then the average value of the derivative dfldt over a certain time interval 7" is 

df_ 
dt +1 df f{T) —/(0) 

dt ~ T ' 

Since/(f) varies only within finite limits, then as T increases without limit, the average value of dfldt clearly 
goes to zero. 
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d 

dx? 
= 0. 

We multiply this equation by xa and integrate over all space. We transform the integral by 

Gauss’ theorem, keeping in mind that at infinity t£ = 0, and so the surface integral vanishes: 

or finally. 

J Ta dV = 0. 

On the basis of this equality we can write for the integral of T‘ 

J T‘dV= J T°dV=if, 

where ^ is the total energy of the system. 

Finally, substituting (34.1) we get: 

(34.3) 

§f = X mac2 (34.4) 

This relation is the relativistic generalization of the virial theorem of classical mechanics. 

(See Mechanics, § 10.) For low velocities, it becomes 

(f - X mac2 = - X , 

that is, the total energy (minus the rest energy) is equal to the negative of the average value 

of the kinetic energy—in agreement with the result given by the classical virial theorem for 

a system of charged particles (interacting according to the Coulomb law). 

We must point out that our formulas have a quite formal character and need to be made 

more precise. The point is that the electromagnetic field energy contains terms that give an 

infinite contribution to the electromagnetic self-energy of point charges (see § 37). To give 

mining to the corresponding expressions we should omit these terms, considering that the 

intrinsic electromagnetic energy is already included in the kinetic energy of the particle 

(9.4). This means that we should “renormalize” the energy making the replacement 

in (34.4), where Efl and Hfl are the fields produced by the a’th particle. Similarly in (34.3) 

we should make the replacement! 

J TaadV-> J T“ dV + X E“ +nH" dV. 

t Note that without this change the expression - J Ta° dV = Jfi 87T dV + 
positive and cannot vanish. 

Z mava __ jsessentiaiiy 

“ Ji 
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§ 35. The energy-momentum tensor for macroscopic bodies 

In addition to the energy-momentum tensor for a system of point particles (33.5), we shall 

also need the expression for this tensor for macroscopic bodies which are treated as being 
continuous. 

The flux of momentum through the element df of the surface of the body is just the force 

acting on this surface element. Therefore -oap dfp is the a-component of the force acting on 

the element. Now we introduce a reference system in which a given element of volume of 

the body is at rest. In such a reference system, Pascal’s law is valid, that is, the pressure p 

applied to a given portion of the body is transmitted equally in all directions and is every¬ 

where perpendicular to the surface on which it acts.f Therefore we can write o„p dfp = -pdfa, 

so that the stress tensor is oafj = - p8ap. As for the components T“°, which represent the 

momentum density, they are equal to zero for the given volume element in the reference 

system we are using. The component T00 is as always the energy density of the body, which 

we denote by e; e/c2 is then the mass density of the body, i.e. the mass per unit volume. We 

emphasize that we are talking here about the unit “proper” volume, that is, the volume in the 

reference system in which the given portion of the body is at rest. 

Thus, in the reference system under consideration, the energy-momentum tensor (for the 
given portion of the body) has the form: 

( £ 0 0 0 \ 

^ 0 0 0 p J 
Now it is easy to find the expression for the energy-momentum tensor in an arbitrary 

reference system. To do this we introduce the four-velocity u' for the macroscopic motion of 

an element of volume of the body. In the rest frame of the particular element, u‘ = (1, 0). The 

expression for T'k must be chosen so that in this reference system it takes on the form (35.1). 
It is easy to verify that this is 

Tik = (p + £)u‘uk - pgik, (35.2) 

or, for the mixed components. 

Tk = (p + e)uiUk - pSk. 

This expression gives the energy-momentum tensor for a macroscopic body. The expressions 

for the energy density W, energy flow vector S and stress tensor oap are: 

W = (p + £)y 

' 1 v2 ’ (35.3) 

t Strictly speaking, Pascal’s law is valid for liquids and gases. However, for solid bodies the maximum 
possible difference in the stress in different directions is negligible in comparison with the stresses which 
can play a role in the theory of relativity, so that its consideration is of no interest. 
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(p + £)vavp 
~ PSafi • 

If the velocity vof the macroscopic motion is small compared with the velocity of light, then 

we have approximately: 

S = (p + £)v. 

Since S/c2 is the momentum density, we see that in this case the sum (p + £)/c2 plays the role 

of the mass density of the body. 

The expression for T‘k simplifies in the case where the velocities of all the particles 

making up the body are small compared with the velocity of light (the velocity of the 

macroscopic motion itself can be arbitrary). In this case we can neglect, in the energy 

density £, all terms small compared with the rest energy, that is, we can write p^c2 in place 

of £, where pf) is the sum of the masses of the particles present in unit (proper) volume of 

the body (we emphasize that in the general case, p() must differ from the actual mass density 

elc2 of the body, which includes also the mass corresponding to the energy of microscopic 

motion of the particles in the body and the energy of their interactions). As for the pressure 

determined by the energy of microscopic motion of the molecules, in the case under 

consideration it is also clearly small compared with the rest energy p^c2. Thus we find 

Tlk = Pff2u'uk. (35.4) 

From the expression (35.2), we get 

Tf = e-3p. (35.5) 

The general property (34.2) of the energy-momentum tensor of an arbitrary system now 

shows that the following inequality is always valid for the pressure and density of a macroscopic 

body: 

P < f - (35.6) 

Let us compare the relation (35.5) with the general formula (34.1) which we saw was valid 

for an arbitrary system. Since we are at present considering a macroscopic body, the expression 

(34.1) must be averaged over all the values of r in unit volume. We obtain the result 

£-3 p = T*mac2 (35.7) 

(the summation extends over all particles in unit volume). 

The right side of this equation tends to zero in the ultrarelativistic limit, so in this limit the 

equation of state of matter is: f 

P 
£ 

3' 
(35.8) 

t This limiting equation of state is obtained here assuming an electromagnetic interaction between the 
particles. We shall assume (when this is needed in Chapter 14) that it remains valid for the other possible 

interactions between particles, though there is at present no proof of this assumption. 
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We apply our formula to an ideal gas, which we assume to consist of identical particles. 

Since the particles of an ideal gas do not interact with one another, we can use formula 

(33.5) after averaging it. Thus for an ideal gas. 

dxk 
ds ’ 

where n is the number of particles in unit volume and the dash means an average over all the 

particles. If there is no macroscopic motion in the gas then we can use for Tik the expression 

(35.1). Comparing the two formulas, we arrive at the equations: 

(35.9) 

These equations determine the density and pressure of a relativistic ideal gas in terms of the 

velocity of its particles; the second of these replaces the well-known formula p = nmv^B 

of the nonrelativistic kinetic theory of gases. 



CHAPTER 5 

CONSTANT ELECTROMAGNETIC FIELDS 

§ 36. Coulomb’s law 

For a constant electric, or as it is usually called, electrostatic field, the Maxwell equations 

have the form: 

div E = 4np, (36.1) 

curl E = 0. (36.2) 

The electric field E is expressed in terms of the scalar potential alone by the relation 

E = - grad 0. (36.3) 

Substituting (36.3) in (36.1), we get the equation which is satisfied by the potential of a 

constant electric field: 

A<j> = - 4np. (36.4) 

This equation is called the Poisson equation. In particular, in vacuum, i.e., for Q = 0, the 

potential satisfies the Laplace equation 

A<j> = 0. (36.5) 

From the last equation it follows, in particular, that the potential of the electric field can 

nowhere have a maximum or a minimum. For in order that <j> have an extreme value, it would 

be necessary that the first derivatives of 0 with respect to the coordinates be zero, and that 

the second derivatives O20/A2, d^tp/dy2, d~(p/dz^ all have the same sign. The last is impossible, 

since in that case (36.5) could not be satisfied. 
We now determine the field produced by a point charge. From symmetry considerations, 

it is clear that it is directed along the radius-vector from the point at which the charge e is 

located. From the same consideration it is clear that the value E of the field depends only on 

the distance R from the charge. To find this absolute value, we apply equation (36.1) in the 

integral form (30.5). The flux of the electric field through a spherical surface of radius R 

circumscribed around the charge e is equal to 4nR2E; this flux must equal 4ne. From this we 

get 

In vector notation: 

E 
eR 

R3 ' 
(36.6) 

95 
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Thus the field produced by a point charge is inversely proportional to the square of the 

distance from the charge. This is the Coulomb law. The potential of this field is, clearly, 

(36.7) 

If we have a system of charges, then the field produced by this system is equal, according 

to the principle of superposition, to the sum of the fields produced by each of the particles 

individually. In particular, the potential of such a field is 

<j> = Z - 

where Ra is the distance from the charge ea to the point at which we are determining the 

potential. If we introduce the charge density Q, this formula takes on the form 

Pv- (36.8) 

where R is the distance from the volume element dV to the given point of the field. 

We note a mathematical relation which is obtained from (36.4) by substituting the values 

of Q and 0 for a point charge, i.e. Q = c5(R) and 0 = e/R. We then find 

= ~4nSW- (36.9) 

§ 37. Electrostatic energy of charges 

We determine the energy of a system of charges. We start from the enegy of the field, that 

is, from the expression (31.5) for the energy density. Namely, the energy of the system of 

charges must be equal to 

u^jE2“v- 
where E is the field produced by these charges, and the integral goes over all space. Substituting 

E = - grad <j), U can be changed to the following form: 

E-grad <t>dV=~^ j div (E <p)dV+±j <j>divEdV. 

According to Gauss’ theorem, the first integral is equal to the integral of E0 over the surface 

bounding the volume of integration, but since the integral is taken over all space and since 

the field is zero at infinity, this integral vanishes. Substituting in the second integral, div E 

= AnQ, we find the following expression for the energy of a system of charges: 

U=^Q*dV. (37.1) 

For a system of point charges, ea, we can write in place of the integral a sum over the charges 

U=^Lea^, (37.2) 

where <f>a is the potential of the field produced by all the charges, at the point where the 

charge ea is located. 
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If we apply our formula to a single elementary charged particle (say, an electron), and the 

field which the charge itself produces, we arrive at the result that the charge must have a 

certain “self’-potential energy equal to e<p/2, where <j) is the potential of the field produced 

by the charge at the point where it is located. But we know that in the theory of relativity 

every elementary particle must be considered as pointlike. The potential <j) = e/R of its field 

becomes infinite at the point R = 0. Thus according to electrodynamics, the electron would 

have to have an infinite “self-energy”, and consequently also an infinite mass. The physical 

absurdity of this result shows that the basic principles of electrodynamics itself lead to the 

result that its application must be restricted to definite limits. 

We note that in view of the infinity obtained from electrodynamics for the self-energy and 

mass, it is impossible within the framework of classical electrodynamics itself to pose the 

question whether the total mass of the electron is electrodynamic (that is, associated with the 

electromagnetic self-energy of the particle).t 

Since the occurrence of the physically meaningless infinite self-energy of the elementary 

particle is related to the fact that such a particle must be considered as pointlike, we can 

conclude that electrodynamics as a logically closed physical theory presents internal 

contradictions when we go to sufficiently small distances. We can pose the question as to the 

order of magnitude of such distances. We can answer this question by noting that for the 

electromagnetic self-energy of the electron we should obtain a value of the order of the rest 

energy me2. If, on the other hand, we consider an electron as possessing a certain radius R0, 

then its self-potential energy would be of order e2/R0. From the requirement that these two 

quantities be of the same order, e2/R0 ~ me2, we find 

Ro~~^2- (37.3) 
me 

This dimension (the “radius” of the electron) determines the limit of applicability of 

electrodynamics to the electron, and follows already from its fundamental principles. We 

must, however, keep in mind that actually the limits of applicability of the classical 

electrodynamics which is presented here lie must higher, because of the occurrence of 

quantum phenomena. :j: 

We now turn again to formula (37.2). The potentials <pa which appear there are equal, from 

Coulomb’s law, to 

<Pa=Z-^, (37.4) 
Kab 

where Rab is the distance between the charges ea, eb. The expression for the energy (37.2) 

consists of two parts. First, it contains an infinite constant, the self-energy of the charges, not 

depending on their mutual separations. The second part is the energy of interaction of the 

charges, depending on their separations. Only this part has physical interest. It is equal to 

U'=\ (37.5) 

t From the purely formal point of view, the finiteness of the electron mass can be handled by introducing 
an infinite negative mass of nonelectromagnetic origin which compensates the infinity of the electromagnetic 
mass (mass “renormalization”). However, we shall see later (§ 75) that this does not eliminate all the 
internal contradictions of classical electrodynamics. 
| Quantum effects become important for distances of the order of hi me, where h is Planck’s constant. The 

ratio of these distances to R0 is of order hc/e2 ~ 137. 
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where 
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(37-6> 

is the potential at the point of location of ea, produced by all the charges other than ea. In 

other words, we can write 

u - 2 kb Rah ■ 

In particular, the energy of interaction of two charges is 

rr'=£l£L 

(37.7) 

(37.8) 

§ 38. The field of a uniformly moving charge 

We determine the field produced by a charge e, moving uniformly with velocity V. We call 

the laboratory frame the system K; the system of reference moving with the charge is the K’ 

system. Let the charge be located at the origin of coordinates of the K’ system. The system 

K’ moves relative to K along the X axis; the axes Y and Z are parallel to Y' and Z'. At the time 

t - 0 the origins of the two systems coincide. The coordinates of the charge in the K system 

are consequently x = Vt, y = z = 0. In the K’ system, we have a constant electric field with 

vector potential A' = 0, and scalar potential equal to <p' = elR', where R'2 = x2 + y'2 + z2. In 

the K system, according to (24.1) for A' = 0, 

We must now express R' in terms of the coordinates x, y, z, in the K system. According to 

the formulas for the Lorentz transformation 

from which 

R'2 = 

(x - Vt)2 + [ l-^\y2 + z2) 
c J 

Substituting this in (38.1) we find 

(38.2) 

4> = -k (38.3) 

where we have introduced the notation 
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R*2 =(x- Vt)2 + ^1 - ^-j(y2 + z2>- (38.4) 

The vector potential in the K system is equal to 

A = <t>T = 3- ^ 

In the K' system the magnetic field H' is absent and the electric field is 

From formula (24.2), we find 

Substituting for R', x', y', z, their expressions in terms of x, y, z, we obtain 

E = (38.6) 

where R is the radius vector from the charge e to the field point with coordinates x, y, z (its 

components are jc - Vt, y, z). 

This expression for E can be written in another form by introducing the angle 6 between 

the direction of motion and the radius vector R. It is clear that y2 + z2 = R2 sin2 6, and 

therefore R*2 can be written in the form: 

Then we have for E, 

! =i?2|^l 

E = 

(38.7) 

(38.8) 

For a fixed distance R from the charge, the value of the field E increases as 6 increases 

from 0 to nil (or as 6 decreases from it to nil). The field along the direction of motion 

(6 = 0, n) has the smallest value; it is equal to 
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The largest field is that perpendicular to the velocity (6 = nil), equal to 

We note that as the velocity increases, the field £„ decreases, while EL increases. We can 

describe this pictorially by saying that the electric field of a moving charge is “contracted” 

in the direction of motion. For velocities V close to the velocity of light, the denominator in 

formula (38.8) is close to zero in a narrow interval of values 6 around the value 6 = nil. The 
“width” of this interval is, in order of magnitude. 

Thus the electric field of a rapidly moving charge at a given distance from it is large only 

in a narrow range of angles in the neighbourhood of the equatorial plane, and the width of 

this interval decreases with increasing Vlike - (V2lc2). 

The magnetic field in the K system is 

H=cVxE (38.9) 

[see (24.5)]. In particular, for V « c the electric field is given approximately by the usual 

formula for the Coulomb law, E = eR/R3, and the magnetic field is 

(38.10) 

PROBLEM 

Determine the force (in the K system) between two charges moving with the same velocity V. 

Solution: We shall determine the force F by computing the force acting on one of the charges (e{) in the 
field produced by the other (e2). Using (38.9), we have 

F = e,E2 +^-VxH2 =eJ\\-'Cryi + ^-V(V-E2). 

Substituting for E2 from (38.8), we get for the components of the force in the direction of motion (Fx) and 
perpendicular to it (/',,): 

where R is the radius vector from e2 to et, and 6 is the angle between R and V. 

§ 39. Motion in the Coulomb field 

We consider the motion of a particle with mass m and charge e in the field produced by 
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a second charge e'\ we assume that the mass of this second charge is so large that it can be 

considered as fixed. Then our problem becomes the study of the motion of a charge e in a 

centrally symmetric electric field with potential <j> - elr. 

The total energy <^of the particle is equal to 

where a = ee. If we use polar coordinates in the plane of motion of the particle, then as we 
know from mechanics. 

p2 = (M2/r2) + p2, 

where pr is the radial component of the momentum, and M is the constant angular momentum 

of the particle. Then 

if = c ^jp? + ^jL + m2c2 + ^ . (39.1) 

We discuss the question whether the particle during its motion can approach arbitrarily close 

to the centre. First of all, it is clear that this is never possible if the charges e and e repel each 

other, that is, if e and e have the same sign. Furthermore, in the case of attraction (e and e 

of opposite sign), arbitrarily close approach to the centre is not possible if Me > I a I, for 

in this case the first term in (39.1) is always large than the second, and for r 0 the right 

side of the equation would approach infinity. On the other hand, if Me < I a I, then as n 

0, this expression can remain finite (here it is understood that pr approaches infinity). 
Thus, if 

cM < I a I, (39.2) 

the particle during its motion “falls in” toward the charge attracting it, in contrast to non- 

relativistic mechanics, where for the Coulomb field such a collapse is generally impossible 

(with the exception of the one case M = 0, where the particle e moves on a line toward the 
particle e'). 

A complete determination of the motion of a charge in a Coulomb field starts most 

conveniently from the Hamilton-Jacobi equation. We choose polar coordinates r, <p, in the 

plane of the motion. The Hamilton-Jacobi equation (16.11) has the form 

We seek an S of the form 

5 = -^f + M0 + /(r), 

where if and M are the constant energy and angular momentum of the moving particle. The 
result is 

(39.3) 

The trajectory is determined by the equation dSldM= const. Integration of (39.3) leads to the 

following results for the trajectory: 
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(a) If A/c> I a I, 

(c2M2 - a2) i = c^J(Mef)2 - m2c2(M2c2- a2) cos ^1 - j ~^a- (39.4) 

(b) If Me < I a I, 

(a2 - M2c2 )j = + c^(M(f )2 +m2c2(a2 - M2c2) cosh ^^2^2 ~ 1 j + 

(c) If Me = I a I, 

(39.5) 

(39.6) 

The integration constant is contained in the arbitrary choice of the reference line for 

measurement of the angle <p. 
In (39.4) the ambiguity of sign in front of the square root is unimportant, since it already 

contains the arbitrary reference origin of the angle <j> under the cos. In the case of attraction 

(a < 0) the trajectory corresponding to this equation lies entirely at finite values of r (finite 

motion), if ef< me2, lief > me2, then r can go to infinity (infinite motion). The finite motion 

corresponds to motion in a closed orbit (ellipse) in nonrelativistic mechanics. From (39.4) 

it is clear that in relativistic mechanics the trajectory can never be closed; when the angle 0 

changes by lit, the distance r from the centre does not return to its initial value. In place of 

ellipses we here get orbits in the form of open “rosettes”. Thus, whereas in nonrelativistic 

mechanics the finite motion in a Coulomb field leads to a closed orbit, in relativistic mechanics 

the Coulomb field loses this property. 

In (39.5) we must choose the positive sign for the root in case a < 0, and the negative sign 

if a > 0 [the opposite choice of sign would correspond to a reversal of the sign of the root 

in (39.1)]. 
For a < 0 the trajectories (39.5) and (39.6) are spirals in which the distance r approaches 

0 as 0 00. The time required for the “falling in” of the charge to the coordinate origin is 

finite. This can be verified by noting that the dependence of the coordinate r on the time is 

determined by the equation dSldef= const; substituting (39.3), we see that the time is determined 

by an integral which converges for r —» 0. 

PROBLEMS 

1. Determine the angle of deflection of a charge passing through a repulsive Coulomb field (a > 0). 

Solution: The angle of deflection x equals %=n-20o, where 20q is the angle between the two asymptotes 

of the trajectory (39.4). We find 

v-^c^M^-a2 | 
ca I’ 

where v is the velocity of the charge at infinity. 



2. Determine the effective scattering cross section at small angles for the scattering of particles in a 

Coulomb field. 

Solution: The effective cross section da is the ratio of the number of particles scattered per second into 
a given element do of solid angle to the flux density of impinging particles (i.e., to the number of particles 
crossing one square centimetre, per second, of a surface perpendicular to the beam of particles). 

Since the angle of deflection X of the particle during its passage through the field is determined by the 
impact parameter Q (i.e. the distance from the centre to the line along which the particle would move in the 

absence of the field), 

, „ „ dp j dp do 
do= 2nede = 2kQ ~^dX = 

where do = 2n sin XdX-^ The angle of deflection (for small angles) can be taken equal to the ratio of the 
change in momentum to its initial value. The change in momentum is equal to the time integral of the force 
acting on the charge, in the direction perpendicular to the direction of motion; it is approximately 

(air1) ■ (Q/r). Thus we have 

I (ie2 
aQ dt 2 a 

+ V2!2)372 
(vis the velocity of the particles). From this we find the effective cross section for small X- 

do 

X4 ‘ 

In the nonrelativistic case, p = mv, and the expression coincides with the ■ 
formulal for small X- 

: obtained from the Rutherford 

§ 40. The dipole moment 

We consider the field produced by a system of charges at large distances, that is, at 

distances large compared with the dimensions of the system. 

We introduce a coordinate system with origin anywhere within the system of charges. Let 

the radius vectors of the various charges be ra. The potential of the field produced by all the 

charges at the point having the radius vector R0 is 

♦-?nET^n mi) 
(the summation goes over all charges); here R0 - rfl are the radius vectors from the charges 

ea to the point where we are finding the potential. 

We must investigate this expansion for large R0 (Rp » rfl). To do this, we expand it in 

powers or ra/R0, using the formula 

/(R0 - r) =/(R0) - r • grad/(Ro) 

(in the grad, the differentiation applies to the coordinates of the vector Rp). To terms of first 

order, 

<j> = ^ -£ eara • grad-^. (40.2) 

f See Mechanics, § 18. 
| See Mechanics, § 19. 
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The sum 

§ 40 

d = E eara (40.3) 

is called the dipole moment of the system of charges. It is important to note that if the sum 

of all the charges, Yea, is zero, then the dipole moment does not depend on the choice of the 

origin of coordinates, for the radius vectors rfl and r' of one and the same charge in two 

different coordinate systems are related by 

r' = ra + a, 

where a is some constant vector. Therefore if £ea = 0, the dipole moment is the same in both 

systems: 

d' = Iesr' =2,eara +ale„ = d. 

If we denote by e+, r* and e", r“ the positive and negative charges of the system and 

their radius vectors, then we can write the dipole moment in the form 

d = Ze+ar* - Ze-r~ = R+ Z e+a - R“ Ze" 

where 

(40.4) 

R+ 
Z e* r* 

ze„+ ’ 
R = 

Z e~r~ 

Zr- 
(40.5) 

are the radius vectors of the “charge centres” for the positive and negative charges. If 

If,* = Xe„ = e, then 

d = eR+ _, (40.6) 

where R+_ = R+ - R" is the radius vector from the centre of negative to the centre of positive 

charge. In particular, if we have altogether two charges, then R+ _ is the radius vector 
between them. 

If the total charge of the system is zero, then the potential of the field of this system at 
large distances is 

(40.7) 

The field intensity is: 

E = - grad l-^SL = ~ -igrad(d R0) - (d • R0) grad 
«0 K0 Rq 

or finally. 

E = 3(n ~ d)n - d 

R3o 

where n is a unit vector along R0. Another useful expression for the field is 

E = (d • V)V-1-, 

(40.8) 

(40.9) 

Thus the potential of the field at large distances produced by a system of charges with total 
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charge equal to zero is inversely proportional to the square of the distance, and the field 

intensity is inversely proportional to the cube of the distance. This field has axial symmetry 

around the direction of d. In a plane passing through this direction (which we choose as the 

z axis), the components of the vector E are: 

K K 

The radial and tangential components in this plane are 

E = d 2 cos 6 E _ dsm6 

Ri Ri 

(40.10) 

(40.11) 

§ 41. Multipole moments 

In the expansion of the potential in powers of l//?0, 

(p = 0(O) + 0(1) + 0(2) + ... , (41.1) 

the term 0(n) is proportional to 1 /R£+1. We saw that the first term, 0(O), is determined by the 

sum of all the charges; the second term, 0(1), sometimes called the dipole potential of the 

system, is determined by the dipole moment of the system. 

The third term in the expansion is 

(41.2) 

where the sum goes over all charges; we here drop the index numbering the charges; xa are 

the components of the vector r, and Xa those of the vector R0. This part of the potential is 

usually called the quadrupole potential. If the sum of the charges and the dipole moment of 

the system are both equal to zero, the expansion begins with <p(2\ 

In the expression (41.2) there enter the six quantities Hexaxp. However, it is easy to see 

that the field depends not on six independent quantities, but only on five. This follows from 

the fact that the function 1 /R0 satisfies the Laplace equation, that is. 

o d2 f 1 ' 

a(i dXadXAR0 , 

We can therefore write <j)<2> in the form 

The tensor 

Dap = Z e(3x0xp - r2Sap) (41.3) 

is called the quadrupole moment of the system. From the definition of Dap it is clear that 

the sum of its diagonal elements is zero: 

Daa = 0. (41.4) 

Therefore the symmetric tensor Dap has altogether five independent components. With the 
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aid of Dap, we can write 

or, performing the differentiation. 

D«P d2 f l) 

6 dXadXp [ r0 / 

d2 1_3XaXp ^ ^ 

R0 “ R05 “ “^p 

and using the fact that 8ap Dap = £>ace = 0, 

(41.5) 

(2) 
2/?03 ’ (41.6) 

Like every symmetric three-dimensional tensor, the tensor Dap can be brought to principal 

axes. Because of (41.4), in general only two of the three principal values will be independent. 

If it happens that the system of charges is symmetric around some axis (the z axis)t then this 

axis must be one of the principal axes of the tensor Dap, the location of the other two axes 

in the x, y plane is arbitrary, and the three principal values are related to one another: 

D»=Dyy = -%Da. (41.7) 

Denoting the component Dzz by D (in this case it is simply called the quadrupole moment), 
we get for the potential 

0<2) = 4% (3 C°S2 ^ “ 1} = 2%P2 (C°S 6)’ (41.8) 

where 6 is the angle between R0 and the z axis, and P2 is a Legendre polynomial. 

Just as we did for the dipole moment in the preceding section, we can easily show that the 

quadrupole moment of a system does not depend on the choice of the coordinate origin, if 

both the total charge and the dipole moment of the system are equal to zero. 

? In similar fashion we could also write the succeeding terms of the expansion (41.1). The 

/’th term of the expansion defines a tensor (which is called the tensor of the 2z-pole moment) 

of rank /, symmetric in all its indices and vanishing when contracted on any pair of indices; 

it can be shown that such a tensor has 21 + 1 independent components.^ 

We shall express the general term in the expansion of the potential in another form, by 

using the well-known formula of the theory of spherical harmonics 

1 R° “ r 1 = ^ + r2-2r«„cosJ = P'<COS*)- 
(41.9) 

where % is the angle between R0 and r. We introduce the spherical angles 0, O and 6, 0, 

formed by the vectors R0 and r, respectively, with the fixed coordinate axes, and use the 
addition theorem for the spherical harmonics: 

t We are assuming a symmetry axis of any order higher than the second. 

t Such a tensor is said to be irreducible. The vanishing on contraction means that no tensor of lower rank 
in be formed from the components. 
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P, (cos X) = j_, li+ \™ I), Plm' (cos 0) />/ml (cos 6)e-‘ (41.10) 

where the Ptm are the associated Legendre polynomials. 

We also introduce the spherical functions t 

^^ m>-°- 

<p) = (-l)'-m YiM,. (41.11) 

Then the expansion (41.9) takes the form: 

Carrying out this expansion in each term of (40.1), we finally get the following expression 

for the /’th term of the expansion of the potential: 

(41.12) 

(41.13) 

The set of 21 + 1 quantities form the 2'-pole moment of the system of charges. 

The quantities Q™ defined in this way are related to the components of the dipole 

moment vector d by the formulas 

Q™ = idz, GiV = + -j^(dx± idy). (41.14) 

The quantities Q™ are related to the tensor components Dap by the relations 

Go® = - \dzz , Q™ = ± ^(Dxz ± iDyz), 

Q$ = ~^(Dx*-Dyy±2iD*y)- 

(41.15) 

PROBLEM 

Determine the quadrupole moment of a uniformly charged ellipsoid with respect to its centre. 

Solution: Replacing the summation in (41.3) by an integration over the volume of the ellipsoid, we have: 

Dxx = p JJJ (2x2 -y2 - z2)dxdy dz, etc. 

t In accordance with the definition used to quantum mechanics. 
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Let us choose the coordinate axes along the axes of the ellipsoid with the origin at its centre; from symmetry 
considerations it is obvious that these axes are the principal axes of the tensor Da«. By means of the 
transformation 

x = x'a, y = y'b, z = z'c 

the integration over the volume of the ellipsoid 

is reduced to integration over the volume of the unit sphere 

x2 + y'2 + z'2=l. 

As a result we obtain: 

Dxx = f (2«2 ~b2 -c2 ), Dyy = ^(2b2 - a2 - c2), 

Du=^{2c2 -a2 -b2), 

where e = (Anri)abcQ is the total charge of the ellipsoid. 

§ 42. System of charges in an external field 

We now consider a system of charges located in an external electric field. We designate 

the potential of this external field by 0(r). The potential energy of each of the charges is 

ea<t>(ra\ and the total potential energy of the system is 

U='Zea<p( rj. (42.1) 

We introduce another coordinate system with its origin anywhere within the system of 

charges; ra is the radius vector of the charge ea in these coordinates. 

Let us assume that the external field changes slowly over the region of the system of 

charges, i.e. is quasiuniform with respect to the system. Then we can expand the energy U 
in powers of ra: 

U = l/0) + l/l) + lA2) + ...; (42.2) 

in this expansion the first term is 

t/(0) = 0o I ea, (42.3) 

where (p0 is the value of the potential at the origin. In this approximation, the energy of the 

system is the same as it would be if all the charges were located at one point (the origin). 
The second term in the expansion is 

l/l) = (grad 0)o • Z eara 

Introducing the field intensity E0 at the origin and the dipole moment d of the system, we 
have 

f/1) = -d-E0. (42.4) 

The total force acting on the system in the external quasiuniform field is, to the order we 
are considering. 
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F = E0 I + [V(d • E)]0. 

If the total charge is zero, the first term vanishes, and 

F = (d V)E, (42.5) 

i.e. the force is determined by the derivatives of the field intensity (taken at the origin). The 

total moment of the forces acting on the system is 

K = I (rfl x eaE0) = d x E0, (42.6) 

i.e. to lowest order it is determined by the field intensity itself. 

Let us assume that there are two systems, each having total charge zero, and with dipole 

moments d, and d2, respectively. Their mutual distance is assumed to be large in comparison 

with their internal dimensions. Let us determine their potential energy of interaction, U. To 

do this we regard one of the systems as being in the field of the other. Then 

U = - d2 E,. 

where E, is the field of the first system. Substituting (40.8) for Ej, we find: 

U = (dt d2)/?2 -3(dt ■ R)(d2 • R) (42 ?) 

where R is the vector separation between the two systems. 

For the case where one of the systems has a total charge different from zero (and equal to 

e), we obtain similarly 

U = e (42.8) 
R3 

where R is the vector directed from the dipole to the charge. 

The next term in the expansion (42.1) is 

U^ = ^exaxp 
d2<Po 

dxadxp ’ 

Here, as in § 41, we omit the index numbering the charge; the value of the second 

derivative of the potential is taken at the origin; but the potential 0 satisfies Laplace’s 

equation. 

Therefore we can write 

d2<p 

l^2 
$ap 

d2(p 
dxadxf 

= 0. 

(J(2) 1 d2(j)0 , 
2 dxadxp 

or, finally, 

(2) DaP d2<p{) 
6 dxadxp ’ 

(42.9) 



110 CONSTANT ELECTROMAGNETIC FIELDS § 43 

The general term in the series (42.2) can be expressed in terms of the 2z-pole moments 

defined in the preceding section. To do this, we first expand the potential <j>(r) in 

spherical harmonics; the general form of this expansion is 

0(r) = Z r‘ 1[t ^2777 abnYtn (®. 0), (42.10) 

where r, 6, <j> are the spherical coordinates of a point and the a/m are constants. Forming the 

sum (42.1) and using the definition (41.13), we obtain: 

U^ = J,_almQ"\ (42.11) 

§ 43. Constant magnetic field 

Let us consider the magnetic field produced by charges which perform a finite motion, in 

which the particles are always within a finite region of space and the momenta also always 

remain finite. Such a motion has a “stationary” character, and it is of interest to consider the 

time average magnetic field H, produced by the charges; this field will now be a function 

only of the coordinates and not of the time, that is, it will be constant. 

In order to find equations for the average magnetic field H, we take the time average of 

the Maxwell equations 

div H = 0, curl H = — ^ + — j. 
c dt c 

The first of these gives simply 

div H = 0. (43.1) 

In the second equation the average value of the derivative dE/dt, like the derivative of any 

quantity which varies over a finite range, is zero (cf. the footnote on p. 90). Therefore the 

second Maxwell equation becomes 

curl H = 

These two equations determine the constant field H. 

We introduce the average vector potential A in accordance with 

curl A = H. 

(43.2) 

We substitute this in equation (43.2). We find 

grad div A - AA = “ j . 

But we know that the vector potential of a field is not uniquely defined, and we^can impose 

an arbitrary auxiliary condition on it. On this basis, we choose the potential A so that 

div A = 0. (43.3) 

Then the equation defining the vector potential of the constant magnetic field becomes 
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It is easy to find the solution of this equation by noting that (43.4) is completely analogous 

to the Poisson equation (36.4) for the scalar potential of a constant electric field, where in 

place of the charge density Q we here have the current density j/c. By analogy with the 

solution (36.8) of the Poisson equation, we can write 

(43.5) 

where R is the distance from the field point to the volume element dV. 

In formula (43.5) we can go over from the integral to a sum over the charges, by substituting 

in place of j the product Q\, and recalling that all the charges are pointlike. In this we must 

keep in mind that in the integral (43.5), R is simply an integration variable, and is therefore 

not subject to the averaging process. If we write in place of the integral 

J dV, the sum X C^V—, 

then Ra here are the radius vectors of the various particles, which change during the motion 

of the charges. Therefore we must write 

(43.6) 

where we average the whole expression under the summation sign. 

Knowing A, we can also find the magnetic field, 

H = curl A = curl i J dV. 

The curl operator refers to the coordinates of the field point. Therefore the curl can be 

brought under the integral sign and j can be treated as constant in the differentiation. 

Applying the well-known formula 

curl/a = / curl a + grad/x a. 

where/and a are an arbitrary scalar and vector, to the product j. HR, we get 

curl = grad x j = 
R3 ’ 

and consequently, 

H = IP-^rfV (43.7) 
c J R3 

(the radius vector R is directed from dV to the field point). This is the law oi Biot and Savart. 

§ 44. Magnetic moments 

Let us consider the average magnetic field produced by a system of charges in stationary 

motion, at large distances from the system. 
We introduce a coordinate system with its origin anywhere within the system of charges, 

just as we did in § 40. Again we denote the radius vectors of the various charges by ra, and 
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the radius vector of the point at which we calculate the field by R0. Then R0 - ra is the radius 

vector from the charge ea to the field point. According to (43.6), we have for the vector 
potential: 

A = ±z 
c 

ea \ a 

IR0 - ral' 
(44.1) 

As in § 40, we expand this expression in powers of ra. To terms of first order (we omit 
the index a), we have 

In the first term we can write 

E e\ = -j- £ ex. 
at 

But the average value of the derivativeof a quantity changing within a finite interval (like 

X er) is zero. Thus there remains for A the expression 

A=-'Kr■vi)=^ev<r■R°,• 

We transform this expression as follows. Noting that v = r, we can write (remembering 
that R0 is a constant vector) 

E <?(R0 ’ r>v = ^ ^ ^r(r ■ R0) + ^ £ c[v(r • R0) - r(v • R0)] . 

Upon substitution of this expression in A, the average of the first term (containing the time 
derivative) again goes to zero, and we get 

S=2^"l4v(l"Ro)_r(v Ro)] • 

We introduce the vector 

= ^2,erxv. (44.2) 

which is called the magnetic moment of the system. Then we get for A: 

A = X m (44.3) 

Knowing the vector potential, it is easy to find the magnetic field. With the aid of the 
formula 

curl (a x b) = (b ■ V)a - (a • V) b + a div b - b div a. 

H = curl A = curl [ - X R° ] = ^div - A*-. V) ^2. 

I *o J *o3 R03' 

we find 
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Furthermore, 

113 

div^f = R0 grad-^- +JjdivRo =0 

(^ •V) (- • V)Ro + Ro(« ' v> = fr ~ 3R°(^' R°-- 
/?o RjJ R0 Ko 

Thus, 

- 3n(m ■ tl) - m 

—^ ' 

(44.4) 

where n is again the unit vector along R(). We see that the magnetic field is expressed in 

terms of the magnetic moment by the same formula by which the electric field was expressed 

in terms of the dipole moment [see (40.8)]. 
If all the charges of the system have the same ratio of charge to mass, then we can write 

rxv = £ mx x v. 
2c 2 me 

If the velocities of all the charges v « c then mv is the momentum p of the charge and we 

get 

(44.5) 

where M = Y, r x p is the mechanical angular momentum of the system. Thus in this case, 

the ratio of magnetic moment to the angular momentum is constant and equal to e/2 me. 

PROBLEM 

Find the ratio of the magnetic moment to the angular momentum for a system of two charges (velocities 

Solution: Choosing the origin of coordinates as the centre of mass of the two particles we have m,r, + 
m2r2 = 0 and pi = - p2 = p, where p is the momentum of the relative motion. With the aid of these relations, 

we find 

— _ J_ (_£!_. _£2_I m\m2 jyj 
m~2 c[mj mi)mi+m2 

§ 45. Larmor’s theorem 

Let us consider a system of charges in an external constant uniform magnetic field. The 

time average of the force acting on the system. 

is zero, as is the time average of the time derivative of any quantity which varies over a finite 

range. The average value of the moment of the forces is 
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K = I^(rx(vx H)) 

and is different from zero. It can be expressed in terms of the magnetic moment of the 

system, by expanding the vector triple product: 

K = Z f Mr • H) - H(v • r)} = If jv(r ■ H) - ± H £ r2 J. 

The second term gives zero after averaging, so that 

K = E j v(r • H) = JL E e{\(r ■ H) - r(v • H)} 

[the last transformation is analogous to the one used in deriving (44.3)], or finally 

K = mxH. (45.1) 

We call attention to the analogy with formula (42.6) for the electrical case. 

The Lagrangian for a system of charges in an external constant uniform magnetic field 

contains (compared with the Lagrangian for a closed system) the additional term 

Lh = I^A-v = I^(Hxr)’V = Z^(rxv)-H (45.2) 

[where we have used the expression (19.4) for the vector potential of a uniform field]. 

Introducing the magnetic moment of the system, we have: 

Lh = m • H. (45.3) 

We call attention to the analogy with the electric field; in a uniform electric field, the 

Lagrangian of a system of charges with total charge zero contains the term 

Le = d ■ E, 

which in that case is the negative of the potential energy of the charge system (see § 42). 

We now consider a system of charges performing a finite motion (with velocities v« c) 

in the centrally symmetric electric field produced by a certain fixed charge. We transform 

from the laboratory coordinate system to a system rotating uniformly around an axis passing 

through the fixed particle. From the well-known formula, the velocity v of the particle in the 

new coordinate system is related to its velocity v' in the old system by the relation 

v' = v + £2 x r, 

where r is the radius vector of the particle and £2 is the angular velocity of the rotating co¬ 

ordinate system. In the fixed system the Lagrangian of the system of charges is 

L = X^-[/, 

where U is the potential energy of the charges in the external field plus the energy of their 

mutual interactions. The quantity U is a function of the distances of the charges from the 

fixed particle and of their mutual separations; when transformed to the rotating system it 

obviously remains unchanged. Therefore in the new system the Lagrangian is 

L = E-|(v + ft xr)2 -U. 
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Let us assume that all the charges have the same charge-to-mass ratio elm, and set 

Then for sufficiently small H (when we can neglect terms in H2) the Lagrangian becomes: 

L = E^ + iErHxr-v-(/. 
2 2c 

We see that it coincides with the Lagrangian which would have described the motion of the 

charges in the laboratory system of coordinates in the presence of a constant magnetic field 

(see (45.2)). 

Thus we arrive at the result that, in the nonrelativistic case, the behaviour of a system of 

charges all having the same elm, performing a finite motion in a centrally symmetric electric 

field and in a weak uniform magnetic field H, is equivalent to the behaviour of the same 

system of charges in the same electric field in a coordinate system rotating uniformly with 

the angular velocity (45.4). This assertion is the content of the Larmor theorem, and the 

angular velocity Q = eH/2mc is called the Larmor frequency. 

We can approach this same problem from a different point of view. If the magnetic field 

H is sufficiently weak, the Larmor frequency will be small compared to the frequencies of 

the finite motion of the system of charges. Then we may consider the averages, over times 

small compared to the period 2n!il, of quantities describing the system. These new quantities 

will vary slowly in time (with frequency Q). 

Let us consider the change in the average angular momentum M of the system. According 

to a well-known equation of mechanics, the derivative of M is equal to the moment K of the 

forces acting on the system. We therefore have, using (45.1): 

fi = K^x 
dt 

H. 

If the elm ratio is the same for all particles of the system, the angular momentum and 

magnetic moment are proportional to one another, and we find by using formulas (44.5) and 

(45.4): 

j = (45.5) 

This equation states that the vector M (and with it the megnetic moment m) rotates with 

angular velocity -Q around the direction of the field, while its absolute magnitude and the 

angle which it makes with this direction remain fixed. (This motion is called the Larmor 

precession.) 



CHAPTER 6 

ELECTROMAGNETIC WAVES 

§ 46. The wave equation 

The electromagnetic field in vacuum is determined by the Maxwell equations in which we 

must set p = 0, j = 0. We write them once more: 

curl E = - ^ div H = 0, (46.1) 

curl H = ^ div E = 0. (46.2) 

These equations possess nonzero solutions. This means that an electromagnetic field can 
exist even in the absence of any charges. 

Electromagnetic fields occurring in vacuum in the absence of charges are called 

electromagnetic waves. We now take up the study of the properties of such waves. 

First of all we note that such fields must necessarily be time-varying. In fact, in the 

contrary case, dH/dt = dE/dt = 0 and the equations (46.1) and (46.2) go over into the 

equations (36.1), (36.2) and (43.1), (43.2) of a constant field in which, however, we now 

have p = 0, j = 0. But the solution of these equations which is given by formulas (36.8) and 
(43.5) becomes zero for p = 0, j = 0. 

We derive the equations determining the potentials of electromagnetic waves. 

As we already know, because of the ambiguity in the potentials we can always subject 

them to an auxiliary condition. For this reason, we choose the potentials of the electromagnetic 
wave so that the scalar potential is zero: 

•P = 0. (46.3) 

Then 

1 dA 

E=~C~df' H = curl A- (46-4) 

Substituting these two expressions in the first of equations (46.2), we get 

curl curl A = - AA + grad div A = - ■ (46 51 
c2 dt2 

Despite the fact that we have already imposed one auxiliary condition on the potentials, 

the potential A is still not completely unique. Namely, we can add to it the gradient of an 

116 
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arbitrary function which does not depend on the time (meantime leaving <j> unchanged). In 

particular, we can choose the potentials of the electromagnetic wave so that 

div A = 0. (46.6) 

In fact, substituting for E from (46.4) in div E = 0, we have 

div = -j- div A = 0 
dt dt 

that is, div A is a function only of the coordinates. This function can always be made zero 

by adding to A the gradient of a suitable time-independent function. 

The equation (46.5) now becomes 

AA - \ ^ = 0. (46.7) 
c2 dt2 

This is the equation which determines the potentials of electromagnetic waves. It is called 

the d’Alembert equation, or the wave equation 

Applying to (46.7) the operators curl and d/dt, we can verify that the electric and magnetic 

fields E and H satisfy the same wave equation. 

We repeat the derivation of the wave equation in four-dimensional form. We write the 

second pair of Maxwell equations for the field in the absence of charges in the form 

(This is equation (30.2) with / = 0.) Substituting Fik, expressed in terms of the potentials, 

Fik _ _ dA' 
~ dxt dxk ’ 

we get 

d2Ak d2 A' = Q 

dxjdxk dxkdxk 

We impose on the potentials the auxiliary condition: 

- °- 

(46.8) 

(46.9) 

(This condition is called the Lorentz condition, and potentials that satisfy it are said to be in 

the Lorentz gauge.) Then the first term in (46.8) drops out and there remains 

d2A‘ 

dxkdxk 

d2 A' 

dxkdx‘ 
= 0. (46.10) 

t The wave equation is sometimes written in the form HA = 0, where 

dt2 

is called the d’Alembertian operator. 



118 ELECTROMAGNETIC WAVES § 47 

This is the wave equation expressed in four-dimensional form.t 

In three-dimensional form, the condition (46.9) is: 

1 d<b 

cifivA = 0- (4611) 

It is more general than the conditions <p - 0 and div A = 0 that were used earlier; potentials 

that satisfy those conditions also satisfy (46.11). But unlike them the Lorentz condition has 

a relativistically invariant character: potentials satisfying it in one frame satisfy it in any 

other frame (whereas condition (46.6) is generally violated if the frame is changed). 

§ 47. Plane waves 

We consider the special case of electromagnetic waves in which the field depends only on 

one coordinate, say x (and on the time). Such waves are said to be plane. In this case the 

equation for the field becomes 

dt2 

i<Pf 

dx2 
0, 

where by / is understood any component of the vectors E or H. 

To solve this equation, we rewrite it in the form 

fd fd d\ 

dx) U* dx} 

and introduce new variables 

£=/-—, T] = t+ — 

(47.1) 

so that t - \ (T] + £), X = £ (77 - £). Then 

d 11 f d d 1 I f d d) 
^ 2! l* dx} dl] ~ 2 \ [dt dx)’ 

so that the equation for/becomes 

The solution obviously has the form/=/,(£) + f2(rj), where/, and/2 are arbitrary functions. 
Thus 

/=/,('-7} (47.2) 

t It should be mentioned that the condition (46.9) still does not determine the choice of the potentials 
uniquely. We can add to A a term grad/ and subtract a term 1/c {dj/dt) from 0, where the function/is not 
arbitrary but must satisfy the wave equation □/= 0. 
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Suppose, for example, f2 = 0, so that 
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Let us clarify the meaning of this solution. In each plane x = const, the field changes with 

the time; at each given moment the field is different for different x. It is clear that the field 

has the same values for coordinates x and times t which satisfy the relation t - (x/c) = const, 

that is, 

x = const + ct. 

This means that if, at some time t = 0, the field at a certain point x in space had some definite 

value, then after an interval of time t the field has that same value at a distance ct along the 

X axis from the original place. We can say that all the values of the electromagnetic field are 

propagated in space along the X axis with a velocity equal to the velocity of light, c. 

Thus, 

represents a plane wave moving in the positive direction along the X axis. It is easy to show 

that 

A('+c) 
represents a wave moving in the opposite, negative, direction along the X axis. 

In § 46 we showed that the potentials of the electromagnetic wave can be chosen so that 

0 = 0, and div A = 0. We choose the potentials of the plane wave which we are now 

considering in this same way. The condition div A = 0 gives in this case 

since all quantities are independent of y and z. According to (47.1) we then have also 

d1Ax/dt2 = 0, that is, dAJdt = const. But the derivative dAJdt determines the electric field, 

and we see that the nonzero component Ax represents in this case the presence of a constant 

longitudinal electric field. Since such a field has no relation to the electromagnetic wave, we 

can set Ax = 0. 

Thus the vector potential of the plane wave can always be chosen perpendicular to the X 

axis, i.e. to the direction of propagation of that wave. 

We consider a plane wave moving in the positive direction of the X axis; in this wave, all 

quantities, in particular also A, are functions only of t - (x/c). From the formulas 

E = - — H = curl A 
cdt 

we therefore obtain 

E = - — A', H = VxA = v(r - —1 x A' = - — n x A', 
c \ c) c 

(47.3) 
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where the prime denotes differentiation with respect to t - (x/c) and n is a unit vector along 

the direction of propagation of the wave. Substituting the first equation in the second, we 

obtain 

H = n x E. (47.4) 

We see that the electric and magnetic fields E and H of a plane wave are directed perpendicular 

to the direction of propagation of the wave. For this reason, electromagnetic waves are said 

to be transverse. From (47.4) it is clear also that the electric and magnetic fields of the plane 

wave are perpendicular to each other and equal to each other in absolute value. 

The energy flux in the plane wave, i.e. its Poynting vector is 

and since E • n = 0, 

E), 

Thus the energy flux is directed along the direction of propagation of the wave. Since 

is the energy density of the wave, we can write 

S = cWn, (47.5) 

in accordance with the fact that the field propagates with the velocity of light. 

The momentum per unit volume of the electromagnetic field is Sic2. For a plane wave this 

gives (W/c)n. We call attention to the fact that the relation between energy W and momentum 

W/c for the electromagnetic wave is the same as for a particle moving with the velocity of 

light [see (9.9)]. 
The flux of momentum of the field is determined by the components oap of the Maxwell 

stress tensor (33.3). Choosing the direction of propagation of the wave as the X axis, we find 

that the only nonzero component of T°^ is 

Txx = -oxx = W. (47.6) 

As it must be, the flux of momentum is along the direction of propagation of the wave, and 

is equal in magnitude to the energy density. 

Let us find the law of transformation of the energy density of a plane electromagnetic 

wave when we change from one inertial reference system to another. To do this we start from 

the formula 

(see the problem in § 33) and must substitute 

S' = cW'cos a', = - W'cos2a', 

where a’ is the angle (in the K' system) between the X' axis (along which the velocity V is 

directed) and the direction of propagation of the wave. We find: 
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W=W' £ (47.7) 

Since W = E2/4n = H2/4n, the absolute values of the field intensities in the wave transform 

like 4W. 

PROBLEMS 

1. Determine the force exerted on a wall from which an incident plane electromagnetic wave is reflected 
(with reflection coefficient R). 

Solution: The force f acting on unit area of the wall is given by the flux of momentum through this area, 
i.e., it is the vector with components 

fa =-CapNp-o'apNli, 

where N is the vector normal to the surface of the wall, and Oap and o'ap are the components of the energy- 

momentum tensors for the incident and reflected waves. Using (47.6), we obtain: 

f = Wn(N ■ n) + h"n'(N - n'). 

From the definition of the reflection coefficient, we have: W’ = RW. Also introducing the angle of 
incidence 6 (which is equal to the reflection angle) and writing out components, we find the normal force 
(“light pressure”) 

fN = W(1 + R) cos2 6 

and the tangential force 

/, = Ml - R) sin 6 cos ft 

2. Use the Hamilton-Jacobi method to find the motion of a charge in the field of a plane electromagnetic 
wave with vector potential A[t - (x/c)]. 

Solution: We write the Hamilton-Jacobi equation in four-dimensional form: 

The fact that the field is a plane wave means that the A1 are functions of one independent variable, which 
can be written in the form | = kpr', where /:' is a constant four-vector with its square equal to zero, k,k‘ = 0 
(see the following section). We subject the potentials to the Lorenjz condition 

dA‘ 

dx‘ 
= 0; 

for the variables field this is equivalent to the condition A‘kt = 0. 
We seek a solution of equation (1) in the form 

S = -fx1 + F(|), 

where /' = (/°, f) is a constant vector satisfying the condition fif = m2c2 (5 = -fx‘ is the solution of the 
Hamilton-Jacobi equation for a free particle with four-momentum p‘ = /'). Substitution in (1) gives the 
equation 
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4- 4,-4i - 2y^| - —fiA' = 0, 
cz c 

where the constant y = kjl. Having determined F from this equation, we get 

5 = ~fiX‘ ~ J fiA'dS + ^ J A'A>d^ ■ (2) 
Changing to three-dimensional notation with a fixed reference frame, we choose the direction of propagation 

of the wave as the x axis. Then £ = ct - x, while the constant y=/° - /*. Denoting the two-dimensional 
vector fy,fz by k, we find from the condition fj‘ = (/°)2 - (J1)2 - k2 = m2c2. 

f° +/' = r 

We choose the potentials in the gauge in which <j> = 0, while A(£) lies in the yz plane. Then equation (2) takes 

the form: 

According to the general rules {Mechanics, § 47), to determine the motion we must equate the derivatives 
dS/dK, dS/dy to certain new constants, which can be made to vanish by a suitable choice of the coordinate 
and time origins. We thus obtain the parametric equations in 

The generalized momentum P = p + {etc)A and the energy S are found by differentiating the action with 
respect to the coordinates and the time; this gives: 

py = Ky-^Ay, Pz=Kz-^Az, 

If we average these over the time, the terms of first degree in the periodic function A(|) vanish. We assume 
that the reference system has been chosen so that the particle is at rest in it on the average, i.e. so that its 
averaged momentum is zero. Then 

k = 0, y2 = m2c2+e-1^. 

The final formulas for determining the motion have the form: 

^ z=-#j ^ 
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c, = l+2(A2-A2)rf^; 

Px = t^t(A2-a7), Py = ~ ~Ay, PZ = -^AZ, 
2ycz c c 

^=c7+^(a2-IT)- 

(3) 

(4) 

§ 48. Monochromatic plane waves 

A very important special case of electromagnetic waves is a wave in which the field is a 

simply periodic function of the time. Such a wave is said to be monochromatic. All quantities 

(potentials, field components) in a monochromatic wave depend on the time through a factor 

of the form cos (cot + a). The quantity ft) is called the cyclic frequency of the wave (we shall 

simply call it the frequency). 

In the wave equation, the second derivative of the field with respect to the time is now 

d2f/dt2 - - off so that the distribution of the field in space is determined for a monochromatic 

wave by the equation 

A/+^-/=0. (48.1) 

In a plane wave (propagating along the x axis), the field is a function only of t - (x/c). 

Therefore, if the plane wave is monochromatic, its field is a simply periodic function of 

t-(x/c). The vector potential of such a wave is most conveniently written as the real part of 

a complex expression: 

A = Re {A0e~il°°(48.2) 

Here A0 is a certain constant complex vector. Obviously, the fields E and H of such a wave 

have analogous forms with the same frequency ft). The quantity 

X litc 
ft) 

(48.3) 

is called the wavelength; it is the period of variation of the field with the coordinate x at a 

fixed time t. 

The vector 

k = ^ n (48.4) 
c 

(where n is a unit vector along the direction of propagation of the wave) is called the wave 

vector. In terms of it we can write (48.2) in the form 

A = Re {A0e'(k‘r_<“}, (48.5) 

which is independent of the choice of coordinate axes. The quantity which appears multiplied 

by i in the exponent is called the phase of the wave. 
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So long as we perform only linear operations, we can omit the sign Re for taking the real 

part, and operate with complex quantities as such.t Thus, substituting 

A = A0e,(kr_£a,) 

in (47.3), we find the relation between the intensities and the vector potential of a plane 
monochromatic wave in the form 

E = ikA, H = ik x A. (48.6) 

We now treat in more detail the direction of the field of a monochromatic wave. To be 
specific, we shall talk of the electric field 

E = Re {E0<?'rk'r-“)} 

(everything stated below applies equally well, of course, to the magnetic field). The quantity 

E0 is a certain complex vector. Its square Eq is (in general) a complex number. If the 

argument of this number is - 2a (i.e. Eq = I E^ I e~2ia), the vector b defined by 

E0 = be** (48.7) 

will have its square real, b2 = I E0 I2. With this definition, we write: 

E = Re {bc'(kr-“-«>}. (48.8) 

We write b in the form 

b = b, + ib2, 

where b, and b2 are real vectors. Since b2 = bf - b\ + 2ib, ■ b2 must be a real quantity, 

bj • b2 = 0, i.e. the vectors b, and b2 are mutually perpendicular. We choose the direction of 

bi as the y axis (and the x axis along the direction of propagation of the wave). We then have 
from (48.8): 

Ey = bi cos (at - k • r + a), 

Ez = ± b2 sin (cot - k • r + a), (48.9) 

where we use the plus (minus) sign if b2 is along the positive (negative) z axis. From (48.9) 
it follows that 

t If two quantities A(f) and B(r) are written in complex form 

A(0 = A0c-'“', B(r) = B0eim, 

then in forming their product we must first, of course, separate out the real part. But if, as it frequently 
happens, we are interested only in the time average of this product, it can be computed as 

4 Re {AB*}. 

In fact, we have: 

Re A ■ Re B = 4 (A0c to' + Aje"8') • (B0c to' + B'0e‘m). 

When we average, the terms containing factors e±2ial vanish, so that we are left with 

Re A • Re B = 4 (A0 • Bj + Aq • B0) = { Re (A ■ B*). 
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Thus we see that, at each point in space, the electric field vector rotates in a plane 

perpendicular to the direction of propagation of the wave, while its endpoint describes the 

ellipse (48.10). Such a wave is said to be elliptically polarized. The rotation occurs in the 

direction of (opposite to) a right-hand screw rotating along the x axis, if we have the plus 

(minus) sign in (48.9). 
If hx = b2, the ellipse (48.10) reduces to a circle, i.e. the vector E rotates while remaining 

constant in magnitude. In this case we say that the wave is circularly polarized. The choice 

of the directions of the y and z axes is now obviously arbitrary. We note that in such a wave 

the ratio of the y and z components of the complex amplitude E0 is 

= ± i (48.11) 
E()y 

for rotation in the same (opposite) direction as that of a right-hand screw right and left 

polarizations).! 
Finally, if hx or h2 equals zero, the field of the wave is everywhere and always parallel (or 

antiparallel) to one and the same direction. In this case the wave is said to be linearly 

polarized, or plane polarized. An elliptically polarized wave can clearly be treated as the 

superposition of two plane polarized waves. 
Now let us turn to the definition of the wave vector and introduce the four-dimensional 

wave vector with components 

(48.12) 

That these quantities actually form a four-vector is obvious from the fact that we get a scalar 

the phase of the wave) when we nultiply by x': 

kpc* = at - k • r. (48.13) 

From the definitions (48.4) and (48.12) we see that the square of the wave four-vector is 

zero: 

k% = 0. (48.14) 

This relation also follows directly from the fact that the expression 

A = A0e~lk‘x' 

must be a solution of the wave equation (46.10). 
As is the case for every plane wave, in a monochromatic wave propagating along the x 

axis only the following components of the energy-momentum tensor are different from zero 

(see § 47): 
Y00 _ y’Ol _ y’ll _ jy 

By means of the wave four-vector, these equations can be written in tensor form as 

Tik =^kikk. (48.15) 
or 

t We assume that the coordinate axes form a right-handed system. 
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Finally, by using the law of transformation of the wave four-vector we can easily treat the 

so-called Doppler effect—the change in frequency to of the wave emitted by a source 

moving with respect to the observer, as compared to the “true” frequency to0 of the samp 

source in the reference system (Kf)) in which it is at rest. 

Let V be the velocity of the source, i.e. the velocity of the K0 system relative to K. 

According to the general formula for transformation of four-vectors, we have: 

km) = 

(the velocity of the K system relative to K0 is - V). Substituting k° = ale, k1 = k cos a = 

co/c cos a, where a is the angle (in the K system) between the direction of emission of the 

wave and the direction of motion of the source, and expressing to in terms of (%, we obtain: 

(48.16) 

This is the required formula. For V « c, and if the angle a is not too close to nil, it gives: 

to= to0^l + ^cos aj. (48.17) 

For a = nil, we have: 

®= ®o Jl --jx = fl>o (l - (48.18) 

in this case the relative change in frequency is proportional to the square of the ratio V7c. 

PROBLEMS 

1. Determine the direction and magnitude of the axes of the polarization ellipse in terms of the complex 
amplitude E0. 

Solution: The problem consists in determining the vector b = bj + ib2, whose square is real We have from 
(48.7): 

or E0 - Eq = b2 + b2, E0 x Eo = - 2/b| x b2, (1) 

b,2 • bl = A2 + B2, bfa = AB sin S, 

where we have introduced the notation 

for the absolute values of E0y and E0z and for the phase difference S between them. Then 

lbi 2 = t]A2 + B2 + 2AB sin S ± -^A2 + B2 - 2AB sin S, (2) 
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from which we get the magnitudes of the semiaxes of the polarization ellipse. 
To determine their directions (relative to the arbitrary initial axes y and z) we start from the equality 

Re {(E0 • b])(Eo • b2)} = 0, 

which is easily verified by substituting E0 = (b, + i'b2) e'1". Writing out this equality in the y, z coordinates, 

we get for the angle 6 between the direction of b! and the y axis: 

The direction of rotation of the field is determined by the sign of the x component of the vector b! x b2- 

Taking its expression from (1) 

2i(b, x b2)x = E0zE‘0y - E0zE0y = I E0y I' &)-&)} 
we see that the direction of b, x b2 (whether it is along or opposite to the positive direction of the x axis), 
and the sign of the rotation (whether in the same direction, or opposite to the direction of a right-hand screw 
along the x axis) are given by the sign of the imaginary part of the ratio E0z/E0y (plus for the first case and 
minus for the second). This is a generalization of the rule (48.11) for the case of circular polarization. 

2. Determine the motion of a charge in the field of a plane monochromatic linearly polarized wave. 

Solution: Choosing the direction of the field E of the wave as the y axis, we write: 

Ey = E = E0 cos a£,, Ay =A = - sin col; 

(£ = t - x/c). From formulas (3) and (4) of problem 2, § 47, we find (in the reference system in which 
the particle is at rest on the average) the following representation of the motion in terms of the parameter 

T] =coq): 

P2 p2 ppn 
Px = - ~r~T cos 2t), py=^~ sini), Pz=0. 

4 ym1 a 

The charge moves in the x, y plane in a symmetric figure-8 curve with its longitudinal 

axis. During a period of the motion, rj varies from 0 to In. 

3. Determine the motion of a charge in the field of a circularly polarized wave. 

Solution: For the field of the wave we have: 

Ey = E0 cos Ez - E0 sin <a$. 

A^-^sinn* 4=^cos< 

along the y 

The motion is given by the formulas: 
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Thus the charge moves in the y, z plane along a circle of radius ecE0lyaf with a momentum having the 
constant magnitude p = eE^a; at each instant the direction of the momentum p is opposite to the direction 
of the magnetic field H of the wave. 

§ 49. Spectral resolution 

Every wave can be subjected to the process of spectral resolution, i.e. can be represented 

as a superposition of monochromatic waves with various frequencies. The character of this 

expansion varies according to the character of the time dependence of the field. 

One category consists of those cases where the expansion contains frequencies forming a 

discrete sequence of values. The simplest case of this type arises in the resolution of a purely 

periodic (though not monochromatic) field. This is the usual expansion in Fourier series; it 

contains the frequencies which are integral multiples of the “fundamental” frequency tty = 

2n/T, where T is the period of the field. We write it in the form 

/= ^Jne-i(0ont ’ (49.1) 

(where/is any of the quantities describing the field). The quantities/, are defined in terms 

of the function/by the integrals 

a=7 <49-2> 

Because/(f) must be real. 

f-n =/„*. (49.3) 

In more complicated cases, the expansion may contain integral multiples (and sums of 

integral multiples) of several different incommensurable fundamental frequencies. 

When the sum (49.1) is squared and averaged over the time, the products of terms with 

different frequencies give zero because they contain oscillating factors. Only terms of the 

form //„ = I /„ I2 remain. Thus the average of the square of the field, i.e. the average 

intensity of the wave, is the sum of the intensities of its monochromatic components: 

71 = l/„l2 = 2 £ l/l2. (49.4) 

(where it is assumed that the average of the function/over a period is zero, i.e./0 = / = 0). 

Another category consists of fields which are expandable in a Fourier integral containing 

a continuous distribution of different frequencies. For this to be possible, the function/t) 

must satisfy certain definite conditions; usually we consider functions which vanish for t -> 

± Such an expansion has the form 
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where the Fourier components are given in terms of the function fit) by the integrals 
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fa = J fO)e‘ (49.6) 

Analogously to (49.3), 

f-a =fa- (49.7) 

Let us express the total intensity of the wave, i.e. the integral of/2 over all time, in terms 

of the intensity of the Fourier components. Using (49.5) and (49.6), we have: 

or, using (49.7), 

do 

' 

J ]fj2 do 

2n 
(49.8) 

§ 50. Partially polarized light 

Every monochromatic wave is, by definition, necessarily polarized. However we usually 

have to deal with waves which are only approximately monochromatic, and which contain 

frequencies in a small interval Ato. We consider such a wave, and let o be some average 

frequency for it. Then its field (to be specific we shall consider the electric field E) at a fixed 

point in space can be writen in the form 

EoMc-'6*, 

where the complex amplitude E0(f) is some slowly varying function of the time (for a strictly 

monochromatic wave E0 would be constant). Since E0 determines the polarization of the 

wave, this means that at each point of the wave, its polarization changes with time, such a 

wave is said to be partially polarized. 

The polarization properties of electromagnetic waves, and of light in particular, are observed 

experimentally by passing the light to be investigated through various bodiest and then 

observing the intensity of the transmitted light. From the mathematical point of view this 

means that we draw conclusions concerning the polarization properties of the light from the 

values of certain quadratic functions of its field. Here of course we are considering the time 

averages of such functions. 

Quadratic functions of the field are made up of terms proportional to the products Ea Ep, 

E*aE*p or EaE*p. Products of the form 

EaEp = E0oE0pe~2im, E*aE*p = E^E^e21"1, 

which contain the rapidly oscillating factors e±2,0>t give zero when the time average is taken. 

The products EaE*p = E0aElp do not contain such factors, and so their averages are not 

t For example, through a Nicol prism. 
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zero. Thus we see that the polarization properties of the light are completely characterized 
by the tensor 

Jap = E{)aElp • (50.1) 

Since the vector E0 always lies in a plane perpendicular to the direction of the wave, the 

tensor Jap has altogether four components (in this section the indices a, (5 are understood to 

take on only two values: a, 13=1,2, corresponding to the y and z axes; the x axis is along 
the direction of propagation of the wave). 

The sum of the diagonal elements of the tensor Jap (we denote it by J) is a real quantity— 

the average value of the square modulus of the vector E0 (or E): 

J = Jm = E0 • ES . (50.2) 

This quantity determines the intensity of the wave, as measured by the energy flux density. 

To eliminate this quantity which is not directly related to the polarization properties, we 
introduce in place of Jap the tensor 

J afS 
Pap = ~j-, (50.3) 

for which paa = 1; we call it the polarization tensor. 

From the definition (50.1) we see that the components of the tensor Jap, and consequently 
also pap, are related by 

Pap = Ppa (50.4) 

(i.e. the tensor is hermitian). Consequently the diagonal components pn and p22 are real 

(with pn + p22 - 1) while p21 = pi*2. Thus the polarization is characterized by three real 

parameters. 

Let us study the conditions that the tensor pap must satisfy for completely polarized light. 
In this case E0 = const, and so we have simply 

JaP = JPap ~ E()a E{)p (50.5) 

(without averaging), i.e. the components of the tensor can be written as products of components 

of some constant vector. The necessary and sufficient condition for this is that the determinant 
vanish: 

I Pap I = P11P22 - P12P21 = 0. (50.6) 

The opposite case is that of unpolarized or natural light. Complete absence of polarization 

means that all directions (in the yz plane) are equivalent. In other words the polarization 
tensor must have the form: 

Pap = {Sap. (50.7) 

The determinant is I pap I = L. 

In the general case of arbitrary polarization the determinant has values between 0 and T f 

t The fact that the determinant is positive for any tensor of the form (50.1) is easily seen by considering 
the averaging, for simplicity, as a summation over discrete values, and using the well-known algebraic 
inequality 

\jLxayb\2 <ZlxJ2 Zlytl2. 
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By the degree of polarization we mean the positive quantity P, defined from 
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lAtfl = i(l -P1)- (50.8) 

It runs from the value 0 for unpolarized to 1 for polarized light. 

An arbitrary tensor pap can be split into two parts—a symmetric and an antisymmetric 

part. Of these, the first 

Sap - 2 (P«/i + P[)a ) 

is real because of the hermiticity of pap. The antisymmetric part is pure imaginary. Like any 

antisymmetric tensor of rank equal to the number of dimensions, it reduces to a pseudo¬ 

scalar (see the footnote on p. 18): 

2 (Pap ~ Ppa)= ~^eaPA’ 

where A is a real pseudoscalar, eap is the unit antisymmetric tensor (with components en 

= -e2i = 1). Thus the polarization tensor has the form: 

Pap = Sap - ^ eapA, Sap = Spa, (50.9) 

i.e. it reduces to one real symmetric tensor and one pseudoscalar. 

For a circularly polarized wave, the vector E0 = const, where 

E02 = ± iE(n. 

It is easy to see that then Sap = &«P• while A = ± 1. On the other hand, for a linearly 

polarized wave the constant vector E0 can be chosen to be real, so that A = 0. In the general 

case the quantity A may be called the degree of circular polarization; it runs through values 

from +1 to -1, where the limiting values correspond to right- and left-circularly polarized 

waves, respectively. 

The real symmetric tensor Sap, like any symmetric tensor, can be brought to principal 

axes, with different principal values which we denote by A, and A2. The directions of the 

principal axes are mutually perpendicular. Denoting the unit vectors along these directions 

by n(1) and n<2), we can write Sap in the form: 

Sap = A, + A2 = 1. (50.10) 

The quantities A, and A2 are positive and take on values from 0 to 1. 

Suppose that A = 0, so that pap = Sap. Each of the two terms in (50.10) has the form of a 

product of two components of a constant vector (^/A, n(l) or ^/A2 n<2)). In other words, 

each of the terms corresponds to linearly polarized light. Furthermore, we see that there is 

no term in (50.10) containing products of components of the two waves. This means that the 

two parts can be regarded as physically independent of one another, or, as one says, they are 

incoherent. In fact, if two waves are independent, the average value of the product E^’E^ 

is equal to the product of the averages of each of the factors, and since each of them is zero. 

E™Ef = 0. 
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Thus we arrive at the result that in this case (A - 0) the partially polarized light can be 

represented as a superposition of two incoherent waves (with intensities proportional to 

and A2), linearly polarized along mutually perpendicular directions.t (In the general case of 

a complex tensor pap one can show that the light can be represented as a superposition of 

two incoherent elliptically polarized waves, whose polarization ellipses are similar and 

mutually perpendicular (see problem 2).) 

Let 0 be the angle between the axis 1 (the y axis) and the unit vector n(1); then 

n(1) = (cos 0, sin 0), n<2) = (-sin 0, cos 0). 

Introducing the quantity / = X\ - Aa (assume A\ > A?), we write the components of the tensor 

(50.10) in the following form: 

1 (\ + / cos 20 / sin 20 ") 

^ 2^ /sin 20 1-/cos 20/ 
(50.11) 

Thus, for an arbitrary choice of the axes y and z, the polarization properties of the wave can 

be characterized by the following three real parameters: A—the degree of circular polarization, 

/—the degree of maximum linear polarization, and 0—the angle between the direction n(1) 

of maximum polarization and the y axis. 

In place of these parameters one can choose another set of three parameters: 

= l sin 20, & - A, £3 = / cos 20 (50.12) 

(the Stokes parameters). The polarization tensor is expressed in terms of them as 

1 + £3 

5. + l-«3 / 
(50.13) 

All three parameters run through values from -1 to +1. The parameter £3 characterizes the 

linear polarization along the y and z axes: the value £3=1 corresponds to complete linear 

polarization along the y axis, and £3 = -1 to complete polarization along the z axis. The 

parameter ^ characterizes the linear polarization along directions making an angle of 45° 

with the y axis: the value = 1 means complete polarization at an angle 0 = 7d4, while 

£1 = -I means complete polarization at 0 = -nl4.$ 

The determinant of (50.13) is equal to 

lp^l = i(l-£,2-£f-£32)- (50-14) 

Comparing with (50.8), we see that 

(50.15) 

t The determinant I Sap I = suppose that A] > A2; then the degree of polarization, as defined in (50.8), 
is P = 1 - 2A2. In the present case (A = 0) one frequently characterizes the degree of polarization by using 
the depolarization coefficient, defined as the ratio A^Ap 

% For a completely elliptically polarized wave with axes of the ellipse b[ and b2 (see § 48), the Stokes 
parameters are: 

£1=0, £,= + 2bff2, ^=b1-b\. 

Here the y axis is along b1; while the two signs in <J2 correspond to directions of b2 along and opposite to 
the direction on the z axis. 
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Thus, for a given overall degree of polarization P, different types of polarization are possible, 

characterized by the values of the three quantities <jj2, <jj2, £3, the sum of whose squares is 

fixed; they form a sort of vector of fixed length. 

We note that the quantities = A and = / are invariant under Lorentz 

transformations. This remark is already almost obvious from the very meaning of these 

quantities as degrees of circular and linear polarization.t 

PROBLEMS 

1. Resolve an arbitrary partially polarized light wave into its “natural” and “polarized” parts. 

Solution: This resolution means the representation of the tensor Jap in the form 

The first term corresponds to the natural, and the second to the polarized parts of the light. To determine the 
intensities of the parts we note that the determinant 

\Jap-\Jwdap\ = \E£E$'\ = 0. 

Writing Jap = Jpap in the form (50.13) and solving the equation, we get 

/n) = 7(l -P). 

The intensity of the polarized part is = IE{,p)l2 = J - J(n) = JP. 

The polarized part of the light is in general an elliptically polarized wave, where the directions of the axes 
of the ellipse coincide with the principal axes of the tensor Sap. The lengths and b2 of the axes of the 
ellipse and the angle tj> formed by the axis b( and the y axis are given by the equations: 

bf + bj = JP, 2b= JP%2, tan 2<j> = |k. 

2. Represent an arbitrary partially polarized wave as a superposition of two incoherent elliptically 
polarized waves. 

Solution: For the hermitian tensor pap the “principal axes” are determined by two unit complex vectors 
n(n • n* = 1), satisfying the equations 

Pap np = faia. (1) 

The principal values A, and A2 are the roots of the equation 

\pap-k8ap\ = 0. 

Multiplying (1) on both sides by n*a, we have: 

h = papnatip =±\E0ana\2, 

t For a direct proof, we note that since the field of the wave is transverse in any reference frame, it is clear 
from the start that the tensor pap remains two-dimensional in any new frame. The transformation of pap into 

Pap leaves unchanged the sum of absolute squares p„p p,,p (in fact, the form of the transformation does not 

depend on the specific polarization properties of the light, while for a completely polarized wave this sum 
is 1 in any reference system). Because this transformation is real, the real and imaginary parts of the tensor 
Pap (50.9) transform independently, so that the sums of the squares of the components of each separately 
remain constant, and are expressed in terms of l and A. 
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from which we see that A(, A2 are real and positive. Multiplying the equations 

§ 51 

Papnf = P*apnf' = ^2 n®* 

for the first by n®* and for the second by , taking the difference of the results and using the hermiticity 
of pap, we get: 

(A, - X2)nlpn^ = 0. 

It then follows that n(l) • n(2)* = 0, i.e. the unit vectors n(1) and n(2) are mutually orthogonal. 
The expansion of the wave is provided by the formula 

Pap=X^n^ + l2n?nf. 

One can always choose the complex amplitude so that, of the two mutually perpendicular components, one 
is real and the other imaginary (compare § 48). Setting 

n,(1) = = ib2 

(where now bt and b2 are understood to be normalized by the condition b2 + b\ = 1), we get from the 

equation n(1) • n(2)* = 0: 

n?=ib2, nf = bx. 

We then see that the ellipses of the two elliptically polarized vibrations are similar (have equal axis ratio), 
and one of them is turned through 90° relative to the other. 

3. Find the law of transformation of the Stokes parameters for a rotation of they y, z axes through and 
angle 0. 

Solution: The law is determined by the connection of the Stokes parameters to the components of the 
two-dimensional tensor in the yz plane, and is given by the formulas 

£1 = £1 cos 20 - £, sin 20, & = sin 20 + £3 cos 20, %’2 = %2 . 

§ 51. The Fourier resolution of the electrostatic field 

The field produced by charges can also be formally expanded in plane waves (in a Fourier 

integral). This expansion, however, is essentially different from the expansion of electromagnetic 

waves in vacuum, for the field produced by charges does not satisfy the homogeneous wave 

equation, and therefore each term of this expansion does not satisfy the equation. From this 

it follows that for the plane waves into which the field of charges can be expanded, the 

relation k2 = o?/c2, which holds for plane monochromatic electromagnetic waves, is not 

fulfilled. 

In particular, if we formally represent the electrostatic field as a superposition of plane 

waves, then the “frequency” of these waves is clearly zero, since the field under consideration 

does not depend on the time. The wave vectors themselves are, of course, different from 

zero. 

We consider the field produced by a point charge e, located at the origin of coordinates. 

The potential 0 of this field is determined by the equation (see § 36) 

A0 = ~Ane8{r). (51.1) 

We expand 0 in a Fourier integral, i.e. we represent it in the form 
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<p= W 
(51.2) 

where d3k denotes dkxdkydkz. In this formula <J)k = J <p(r)e ,k rdV. Applying the Laplace 

operator to both sides of (51.2), we obtain 

A <p -b T<pk 
d3k 

(2k)3 ’ 

so that the Fourier component of the expression A<p is 

(A 0k = -lc(j>k. 

On the other hand, we can find (A<p)k by taking Fourier components of both sides of 

equation (51.1), 

(A 0)k J 4neS(r)e * TdV= - 4ne. 

Equating the two expressions obtained for (A<j))k, we find 

This formula solves our problem. 

Just as for the potential 0, we can expand the field 

(51.3) 

E=J Eke* 
d3k 

(2k)3 ' 
(51.4) 

With the aid of (51.2), we have 

E = - grad J <pke,k T 
d3k 

(2k)3 
ik0ke‘ 

d3k 

(2k)3 ’ 

Comparing with (51.4), we obtain 

Ek = -iHk = ~i - (51.5) 

From this we see that the field of the waves, into which we have resolved the Coulomb field, 

is directed along the wave vector. Therefore these waves can be said to be longitudinal. 

§ 52. Characteristic vibrations of the field 

We consider an electromagnetic field (in the absence of charges) in some finite volume of 

space. To simplify further calculations we assume that this volume has the form of a rectangular 

parallelepiped with sides A, P, C, respectively. Then we can expand all quantities characterizing 

the field in this parallelepiped in a triple Fourier series (for the three coordinates). This 

expansion can be written (e.g. for the vector potential) in the form: 
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A = 'ZAkeikr (52.i) 

explicitly indicating that A is real. The summation extends here over all possible values of 
the vector k whose components run through the values 

kx 
2nnx _ 2nny 2nnz 

a ’ ky-~W~' k*-—* (52.2) 

where nx, ny, n, are positive or negative integers. Since A is real, the coefficients in the 

expansion (52.1) are related by the equations A_k = Ak. From the equation div A = 0 it 
tollows that for each k. 

k ' Ak = 0, (52.3) 

i.e., the complex vectors Ak are “perpendicular” to the corresponding wave vectors k. The 

vectors Ak are, of course, functions of the time; from the wave equation (46.7), they satisfy 
the equation J 3 

Ak + c2k2 Ak = 0. (52.4) 

If the dimensions A, B, C of the volume are sufficiently large, then neighbouring values 

ol kx, kr kz (for which n„ ny, n, differ by unity) are very close to one another. In this case we 

may speak of the number of possible values of kx, ky, k7 in the small intervals Akx, Ak„Ak. 

Since to neighbouring values of, say, kx, there correspond values of nx differing by unity 

the number Anx of possible values of kx in the interval Akx is equal simply to the number of 
values of nx m the corresponding interval. Thus, we obtain 

A"‘ = M*' 4"- = SM>- = 

The total number An of possible values of the vector k with components in the intervals Ak 
Aky, Akz is equal to the product Anx Any Anz, that is, ” 

An = -~—^-AkxAk.,Ak,, 
(2tf) 

(52.5) 

where V= AfiC is the volume of the field. It is easy to determine from this the number of 

possible values of the wave vector having absolute values in the interval Ak, and directed 

mto the element of solid angle Ao. To get this we need only transform to polar coordinates 

in the k space” and write in place of AkxAkyAkz the element of volume in these coordinates 
Thus 

~ (2^7 AkA°■ (52.6) 

Replacing Av by 4n, we find the number of possible values of k with absolute value in the 
interval Ak and pointing in all directions: An = (V/2nl)k1Ak. 

We calculate the total energy 

*= J (E2 + H2 )dV 

of the field, expressing it in terms of the quantities Ak. For the electric and magnetic fields 

E = --U = -iZAk<?fk-r, 



(52.7) H = curl A = /1 (k x Ak )eik r. 

When calculating the squares of these sums, we must keep in mind that all products of terms 

with wave vectors k and k' such that k * k' give zero on integration over the whole volume. 

In fact, such terms contain factors of the form e'(k+k ,r, and the integral, e.g. of 

with integer nx different from zero, gives zero. In those terms with k' = -k, the exponentials 

drop out and integration over dV gives just the volume V. 

As a result, we obtain 

•AImixao-cxx;*}. 

From (52.3), we have 

(k x Ak) • (k x Ak) = £2Ak • Ak, 

so that 

<528) 
Each term of this sum corresponds to one of the terms of the expansion (52.1). 

Because of (52.4), the vectors Ak are harmonic functions of the time with frequencies 

= ck, depending only on the absolute value of the wave vector. Depending on the choice of 

these functions, the terms in the expansion (52.1) can represent standing or running plane 

waves. We shall write the expansion so that its terms describe running waves. To do this we 

write it in the form 

A = £ (akc,l£ r + ate * r) (52.9) 

which explicitly exhibits that A is real, and each of the vectors ak depends on the time 

according to the law 

ak ~ e~iC0kt, (Ok=ck. (52.10) 

Then each individual term in the sum (52.9) will be a function only of the difference 

k • r - oy, which corresponds to a wave propagating in the k direction. 

Comparing the expansions (52.9 ) and (52.1), we find that their coefficients are related by 

the formulas 

Ak = ak + a!k, 

and from (52.10) the time derivatives are related by 

Ak = -ick{ak - a!k). 

Substituting in (52.8), we express the field energy in terms of the coefficients of the expansion 

(52.9). Terms with products of the form ak- a_k or ak • alk cancel one another; also noting 
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that the sums Eak • ak and Xa_kalk differ only in the labelling of the summation index, 

and therefore coincide, we finally obtain: 

if — X ifk , ifk : (52.11) 

Thus the total energy of the field is expressed as a sum of the energies ifk, associated with 
each of the plane waves individually. 

In a completely analogous fashion, we can calculate the total momentum of the field, 

J SdV= 4m J E X HJV’ 
for which we obtain 

(52.12) 

This result could have been anticipated in view of the relation between the energy and 
momentum of a plane wave (see § 47). 

The expansion (52.9) succeeds in expressing the field in terms of a series of discrete 

parameters (the vectors ak), in place of the description in terms of a continuous series of 

parameters, which is essentially what is done when we give the potential A(jc, y, z, t) at all 

points of space. We now make a transformation of the variables ak, which has the result that 

the equations of the field take on a form similar to the canonical equations (Hamilton 
equations) of mechanics. 

We introduce the real “canonical variables” Qk and Pk according to the relations 

Qk r(ak + ak). (52.13) 

" ak ) - Qk- 

The Hamiltonian of the field is obtained 

(52.11): 
by substituting these expressions in the energy 

E ^k = 11 (Pk2 +0)2kQ2k ). (52.14) 

Then the Hamilton equation d<%/dPk = Qk coincide with Pk = Qk, which is thus a 

consequence of the equations of motion. (This was achieved by an appropriate choice of the 

coefficient in (52.13).) The equations of motion, d£?ldQk = - Pk, become the equations 

Qk + «kQk = 0, (52.15) 

that is, they are identical with the equations of the field. 

Each of the vectors Qk and Pk is perpendicular to the wave vector k, i.e. has two independent 

components. The direction of these vectors determines the direction of polarization of the 

corresponding travelling wave. Denoting the two components of the vector Qk (in the plane 
perpendicular to k) by Qkj, j = 1, 2, we have 

0 i-ZQl- 
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and similarly for Pk. Then 

139 

j<%kj - \(Pkj + °>kQkj)- (52.16) 

We see that the Hamiltonian splits into a sum of independent terms each of which 

contains only one pair of the quantities Qkj, Pkj. Each such term corresponds to a travelling 

wave with a definite wave vector and polarization. The quantity c%kj has the form of the 

Hamiltonian of a one-dimensional “oscillator”, performing a simple harmonic vibration. For 

this reason, one sometimes refers to this result as the expansion of the field in terms of 

oscillators. 
We give the formulas which express the field explicitly in terms of the variables Pk, Qk. 

From (52.13), we have 

ak = Wf <Pk - i0)kQk), »k = + i0)kQk)- (52.17) 

Substituting these expressions in (52.1), we obtain for the vector potential of the field: 

A = 2 ^ £ |-(cA:Qk cos k r - Pk sin k r). (52.18) 

For the electric and magnetic fields, we find 

E = -2^- £(c*Qk sin k r + Pk cos k r), 

sin k * r + (k x ) cos k * r|. (52.19) 



CHAPTER 7 

THE PROPAGATION OF LIGHT 

§ 53. Geometrical optics 

A plane wave is characterized by the property that its direction of propagation and amplitude 

are the same everywhere. Arbitrary electromagnetic waves, of course, do not have this 

property. Nevertheless, a great many electromagnetic waves, which are not plane, have the 

property that within each small region of space they can be considered to be plane. For this, 

it is clearly necessary that the amplitude and direction of the wave remain practically 

constant over distances of the order of the wavelength. If this condition is satisfied, we can 

introduce the so-called wave surface, i.e. a surface at all of whose points the phase of the 

wave is the same (at a given time). (The wave surfaces of a plane wave are obviously planes 

perpendicular to the direction of propagation of the wave.) In each small region of space we 

can speak of a direction of propagation of the wave, normal to the wave surface. In this way 

we can introduce the concept of rays—curves whose tangents at each point coincide with 
the direction of propagation of the wave. 

The study of the laws of propagation of waves in this case constitutes the domain of 

geometrical optics. Consequently, geometrical optics considers the propagation of waves in 

particular of light, as the propagation of rays, completely divorced from their wave properties, 

higher words, geometrical optics corresponds to the limiting case of small wavelength. 

We now take up the derivation of the fundamental equation of geometrical optics_the 

equation determining the direction of the rays. Let/be any quantity describing the field of 

the wave (any component of E or H). For a plane monochromatic wave,/has the form 

/ = oeKk-r^Hx) = ae,<-k^+a) (531) 

(we omit the Re; it is understood that we take the real part of all expressions). 

We write the expression for the field in the form 

/= ae‘V- (53.2) 

In case the wave is not plane, but geometrical optics is applicable, the amplitude a is, 

generally speaking, a function of the coordinates and time, and the phase y which is called 

the eikonal, does not have a simple form, as in (53.1). It is essential, however, that ybe a 

large quantity. This is clear immediately from the fact that it changes by 2n when we move 

through one wavelength, and geometrical optics corresponds to the limit A -» 0. 

Over small space regions and time intervals the eikonal yean be expanded in series; to 
terms of first order, we have 
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W= Vo + 
dy/ dy/ 

~di7 + t~di 

(the origin for coordinates and time has been chosen within the space region and time 

interval under consideration; the derivatives are evaluated at the origin). Comparing this 

expression with (53.1), we can write 

k = = grad y/, (0- (53.3) 
dr dt 

which corresponds to the fact that in each small region of space (and each small interval of 

time) the wave can be considered as plane. In four-dimensional form, the relation (53.3) is 

expressed as 

dy/ 

dx1 ’ 
(53.4) 

where k, is the wave four-vector. 

We saw in § 48 that the components of the four-vector k' are related by A,/c' = 0. Substituting 

(53.4), we obtain the equation 

dy dy/ ^ 
dxj dx' 

(53.5) 

This equation, the eikonal equation, is the fundamental equation of geometrical optics. 

The eikonal equation can also be derived by direct transition to the limit X -»0 in the wave 

equation. The field /satisfies the wave equation 

Substituting /= ae'v, we obtain 

d2f 

dxjdx' 
0. 

d2a ,y 2iw 

f)x,dx‘ dxj dx' 
+ if 

d2yt dy dyr 

dXi ‘ dx' T 
(53.6) 

But the eikonal y/, as we pointed out above, is a large quantity; therefore we can neglect the 

first three terms compared with the fourth, and we arrive once more at equation (53.5). 

We shall give certain relations which, in their application to the propagation of light in 

vacuum, lead only to completely obvious results. Nevertheless, they are important because, 

in their general form, these derivations apply also to the propagation of light in material 

media. 
From the form of the eikonal equation there results a remarkable analogy between geometrical 

optics and the mechanics of material particles. The motion of a material particle is determined 

by the Hamilton-Jacobi equation (16.11). This equation, like the eikonal equation, is an 

equation in the first partial derivatives and is of second degree. As we know, the action S is 

related to the momentum p and the Hamiltonian J( of the particle by the relations 

P = 
dS 

dt• 
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§ 53 
Comparing these formulas with the formulas t53 31 wp that m 

role in geomenica, opdcs as ,he £ 

For a particle, we have the Hamilton equations 

P = — 
dy dy 

4”:'°8y We haVe POi",ed °U'- We 'mmediatd> corresponding 

l)_ dC0 
~ dr ’ 

_ d(0 

(53.7) 

mmsmrnm 
P ~ Ak\ ^53 

where the coefficient of proportionality t4 between the two four-vectors P‘ and V is so™ 
scalar. In three-dimensional form this relation gives: ome 

P = t4k, <f=Aco. 
’ (53.9) 

mmsmm ^mrnrnmm 
<r= -«»+w»,y,z), (53.10) 

where Vo is a funcdon only of the coordlna.es. The eikonal equaiion (53.5) now lakes ,he 
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(gradyq,)2 =^r- (53.11) 

The wave surfaces are the surfaces of constant eikonal, i.e. the family of surfaces of the form 

Wo (*> z) = const. The rays themselves are at each point normal to the corresponding wave 

surface; their direction is determined by the gradient V «//0. 

As is well known, in the case where the energy is constant, the principle of least action for 

particles can also be written in the form of the so-called principle of Maupertuis: 

8S = djpdl = 0, 

where the integration extends over the trajectory of the particle between two of its points. In 

this expression the momentum is assumed to be a function of the energy and the coordinates. 

The analogous principle for rays is called Fermat’s principle. In this case, we can write by 

analogy: 

Sy/= sj k rfl = 0. (53.12) 

In vacuum, k = (to/c)n, and we obtain (dl ■ n = dl): 

8^dl = 0, (53.13) 

which corresponds to rectilinear propagation of the rays. 

§ 54. Intensity 

In geometrical optics, the light wave can be considered as a bundle of rays. The rays 

themselves, however, determine only the direction of propagation of the light at each point; 

there remains the question of the distribution of the light intensity in space. 

On some wave surface of the bundle of rays under consideration, we isolate an infinitesimal 

surface element. From differential geometry it is known that every surface has, at each of its 

points, two (generally different) principal radii of curvature. Let ac and bd (Fig. 7) be 

elements of the principal circles of curvature, constructed at a given element of the wave 

surface. Then the rays passing through a and c meet at the corresponding centre of curvature 

Oj, while the rays passing through b and d meet at the other centre of curvature 02- 

Fig. 7. 
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F°r fixetJ angular openings of the beams starting from O, and 02, the lengths of the arcs 

ac and bd are, clearly, proportional to the corresponding radii of curvature R, and R2 (i e to 

the engths 0,0 and 020). The area of the surface element is proportional to the product of 

the lengths and bd, i.e., proportional to R,R2. In other words, if we consider the element 

of the wave surface bounded by a definite set of rays, then as we move along them the area 
of the element will change proportionally to R,R2. 

On the other hand, the intensity, i.e. the energy flux density, is inversely proportional to 

the surface area through which a given amount of light energy passes. Thus we arrive at the 
result that the intensity is e 

1 = const 

R,R, ' (54.1) 

This formula must be understood as follows. On each ray (AB in Fig. 7) there are definite 

points O, and 02, which are the centres of curvature of all the wave surfaces intersecting the 

given ray. The distances OO, and 002 from the point O where the wave surface intersects 

the °\ a"d^’ fe the rad,i of curvature R, and R2 of the wave surface at 
the point O. Thus formula (54.1) determines the change in intensity of the light along a given 

ray as a function of the distances from definite points on this ray. We emphasize that this 

formula cannot be used to compare intensities at different points on a single wave surface 

ch rl rr^^T™" by the Square m°dulus of the field’ we can write for the change of the field itself along the ray 

f= 
const ikR 

(54.2) 

where in the phase factor e'kR we can write either eikR' or eikR\ The quantities eikR' and 

e 2. (tor a given ray) differ from each other only by a constant factor, since the difference 

R\ - R2, the distance between the two centres of curvature, is a constant 

If the two radii of curvature of the wave surface coincide,’ then (54.1) and (54 2) have the 

/= 
const 

R (54.3) 

This happens always when the light is emitted from a point source (the wave surfaces are 
then concentric spheres and R is the distance from the light source). 

From (54.1) we see that the intensity becomes infinite at the points R, = 0 R2 = 0 i e at 

the centres of curvature of the wave surface. Applying this to all the rays in a bundle, we find 

hat the intensity of the light in the given bundle becomes infinite, generally, on two surfaces- 

the geometrical loci of all the centres of curvature of the wave surfaces. These surfaces are 

c lied caustics. In the special case of a beam of rays with spherical wave surfaces the two 
caustics fuse into a single point (focus). 

We note from well-known results of differential geometry concerning the properties of the 

loci of centres of curvature of a family of surfaces, that the rays are tangent to the caustic 

It is necessary to keep in mind that (for convex wave surfaces) the centres of curvature of 

the wave surfaces can turn out to lie not on the rays themselves, but on their extensions 

beyond the optical system from which they emerge. In such cases we speak of imaginary 

caustics (or foci). In this case the intensity of the light does not become infinite anywhere 

As for the increase of intensity to infinity, in actuality we must understand that the 

intensity does become large at points on the caustic, but it remains finite (see the problem 
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in § 59). The formal increase to infinity means that the approximation of geometrical optics 

is never applicable in the neighbourhood of the caustic. To this is related the fact that the 

change in phase along the ray can be determined from formula (54.2) only over sections of 

the ray which do not include its point of tangency to the caustic. Later (in § 59), we shall 

show that actually in passing through the caustic the phase of the field decreases by n!2. This 

means that if, on the section of the ray before its first intersection with the caustic, the field 

is proportional to the factor elkx (x is the coordinate along the ray), then after passage through 

the caustic the field will be proportional to The same thing occurs in the neighbourhood 

of the point of tangency to the second caustic, and beyond that point the field is proportional 
toei(kx-K)j 

§ 55. The angular eikonal 

Alight ray travelling in vacuum and impinging on a transparent body will, on its emergence 

from this body, generally have a direction different from its initial direction. This change in 

direction will, of course, depend on the specific properties of the body and on its form. 

However, it turns out that one can derive general laws relating to the change in direction of 

a light ray on passage through an arbitrary material body. In this it is assumed only that 

geometrical optics is applicable to rays propagating in the interior of the body under 

consideration. As is customary, we shall call such transparent bodies, through which rays of 

light propagate, optical systems. 

Because of the analogy mentioned in § 53, between the propagation of rays and the motion 

of particles, the same general laws are valid for the change in direction of motion of a 

particle, initially moving in a straight line in vacuum, then passing through some electromagnetic 

field, and once more emerging into vacuum. For definiteness, we shall, however, always 

speak later of the propagation of light rays. 

We saw in a previous section that the eikonal equation, describing the propagation of the 

rays, can be written in the form (53.11) (for light of a definite frequency). From now on we 

shall, for convenience, designate by y/ the eikonal y/0 divided by the constant (o/c. Then the 

basic equation of geometrical optics has the form: 

(Vy/)2 = 1. (55.1) 

Each solution of this equation describes a definite beam of rays, in which the direction of 

the rays passing through a given point in space is determined by the gradient of y/ at that 

point. However, for our purposes this description is insufficient, since we are seeking general 

relations determining the passage through an optical system not of a single definite bundle 

of rays, but of arbitrary rays. Therefore we must use an eikonal expressed in such a form that 

it describes all the generally possible rays of light, i.e. rays passing through any pair of 

points in space. In its usual form the eikonal y/(r) is the phase of the rays in a certain bundle 

passing through the point r. Now we must introduce the eikonal as a function y/fr, r') of the 

coordinates of two points (r, r' are the radius vectors of the initial and end points of the ray). 

A ray can pass through each pair of points r, r', and y/fr, r') is the phase difference (or, as 

it is called, the optical path length) of this ray between the points r and r'. From now on we 

shall always understand by r and r' the radius vectors to points on the ray before and after 

its passage through the optical system. 

t Although formula (54.2) itself is not valid near the caustic, the change in phase of the field corresponds 
formally to a change in sign (i.e. multiplication by eiK) of R, or R2 in this formula. 
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n ^jn r') one f the radius vectors, say r', is fixed, then yas a function of r describes 
definite bundle of rays, namely, the bundle of rays passing through the point r' Then w 

must satisfy equation (55.1), where the differentiations are applied to the components of ^ 

Similarly, if r is assumed fixed, we again obtain an equation for y(r, r'), so that 

(Vry)2 = 1, (Vr, y)2 = 1. (55.2) 

The direction of the ray is determined by the gradient of its phase. Since y{r, r') is the 

difference in phase at the points r and r\ the direction of the ray at the point r' is given by 

the vector n_ dy/dr, and at the point r by the vector n = - dy/dr. From (55.2) if is clear 
that n and n are unit vectors: J 

i2 = n'2 = 1. 
(55.3) 

The four vectors r r', n, n' are interrelated, since two of them (n, n') are derivatives of a 

i:^srto the other two (r> r°-The taion *itseif s“s * 

To obtain the relation between n, n', r, r\ it is convenient to introduce, in place of y 
another quantj y, on which no auxiliary condition is imposed (i.e., is not required to satisfy 

any differential equations). This can be done as follows. In the function y the independent 
variables are r and r, so that for the differential dy we have 

, dy dy 
dV~ ‘ dr + ^7 • dr' = - n ■ dr + n' ■ dr'. 

n'ThaUr “Cgendre transformation from r> r'to the new independent variables n, 

dy= - d(n • r) + r - dn + d(n' ■ r'( - r' • dn'. 

from which, introducing the function 

X = n' r' - n • r - y, 

we have 

dy 

(55.4) 

• dn'. (55.5) dx = -r dn + r' ■ 

The function x is called the angular eikonal; as we see from (55.5), the independent 

variables in it are n and n'. No auxiliary conditions are imposed on x In fact, equation (55 3) 

now states only a condition referring to the independent variables: of the three components 

°f ll!e '|ector n <and similarly for iT), only two are independent. As independent 
variables we shall use ny, nz, n'y, n'z; then 

nx = aA- n2 -n2, n'x = . 

Substituting these expressions in 

dX = -x dnx — y dny - z dnz + x'dnx + y' dn'y + z' dn', 

we obtain for the differential d%: 

dX 1' (y' £x) - iz~ t-*)'{>'■-1 
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From this we obtain, finally, the following equations: 
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ny„_ ix_ 
nx" dn 

dx_ 
dnz ’ 

y' - 
n' 
-7~x' 
nx 

dX ,, < , _ dx 

dn'y ’ n'x dn'z ’ 

(55.6) 

which is the relation sought between n, n', r, r. The function % characterizes the special 

properties of the body through which the rays pass (or the properties of the field, in the case 
of the motion of a charged particle). 

For fixed values of n, n', each of the two pairs of equations (55.6) represent a straight line. 

These lines are precisely the rays before and after passage through the optical system. Thus 

the equation (55.6) directly determines the path of the ray on the two sides of the optical 
system. 

§ 56. Narrow bundles of rays 

In studying the passage of beams of rays through optical systems, special interest attaches 

to bundles whose rays all pass through one point (such bundles are said to be homocentric). 

After passage through an optical system, homocentric bundles in general cease to be 

homocentric, i.e. after passing through a body the rays no longer come together in any one 

point. Only in exceptional cases will the rays starting from a luminous point come together 

after passage through an optical system and all meet at one point (the image of the luminous 
point).f 

One can show (see § 57) that the only case for which all homocentric bundles remain 

strictly homocentric after passage through the optical system is the case of identical imaging, 

i.e. the case where the image differs from the object only in its position or orientation, or is 
mirror inverted. 

Thus no optical system can give a completely sharp image of an object (having finite 

dimensions) except in the trivial case of identical imaging.^: Only approximate, but not 

completely sharp images can be produced of an extended body, in any case other than for 
identical imaging. 

The most important case where there is approximate transition of homocentric bundles 

into homocentric bundles is that of sufficiently narrow beams (i.e. beams with a small 

opening angle) passing close to a particular line (for a given optical system). This line is 

called the optic axis of the system. 

Nevertheless, we must note that even infinitely narrow bundles of rays (in the three- 

dimensional case) are in general not homocentric; we have seen (Fig. 7) that even in such 

a bundle different rays intersect at different points (this phenomenon is called astigmatism). 

Exceptions are those points of the wave surface at which the two principal radii of curvature 

are equal—a small region of the surface in the neighbourhood of such points can be considered 

as spherical, and the corresponding narrow bundle of rays is homocentric. 

t The point of intersection can lie either on the rays themselves or on their continuations; depending on 
this, the image is said to be real or virtual. 

t Such imaging can be produced with a plane mirror. 
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We consider an optical system having axial symmetry.! The axis of symmetry of the 

system is also its optical axis. The wave surface of a bundle of rays travelling along this axis 

also has axial symmetry; as we know, surfaces of rotation have equal radii of curvature at 

their points of intersection with the symmetry axis. Therefore a narrow bundle moving in 
this direction remains homocentric. 

To obtain general quantitative relations, determining image formation with the aid of 

narrow bundles, passing through an axially-symmetric optical system, we use the general 

equations (55.6) after determining first of all the form of the function % in the case under 
consideration. 

Since the bundles of rays are narrow and move in the neighbourhood of the optical axis, 

the vectors n, n' for each bundle are directed almost along this axis. If we choose the optical 

axis as the X axis, then the components, ny, nz, n'., n' will be small compared with unity. As 

for the components nx, n’x; nx ~ 1 and n'x can be approximately equal to either +1 or -1. In 

the first case the rays continue to travel almost in their original direction, emerging into the 

space on the other side of the optical system, which in this case is called a lens. In the second 

the rays change their direction to almost the reverse; such an optical system is called a 
mirror. 

Making use of the smallness of ny, nz, ny,n'z, we expand the angular eikonal 

% (ny, nz, n'y, n'z) in series and stop at the first terms. Because of the axial symmetry of the 

whole system, x must be invariant with respect to rotations of the coordinate system around 

the optical axis. From this it is clear that in the expansion of x there can be no terms of first 

order, proportional to the first powers of the y- and z-components of the vectors n and n'; 

such terms would not have the required invariance. The terms of second order which have 

the required property are the squares n2 and n'2 and the scalar product n • n'. Thus, to terms 

of second order, the angular eikonal of an axially-symmetric optical system has the form 

X = const + |(n2 + n2) + f(nyn'y + nzn'z) + ~(n'y2 + n'z2), (56.1) 

where /, g, h are constants. 

For definiteness, we now consider a lens, so that we set n'x ~ 1; for a mirror, as we shall 

show later, all the formulas have a similar appearance. Now substituting the expression 

(56.1) in the general equations (55.6), we obtain: 

ny(x ~ g) -fny = y, fny + n'y{x' + h) = y', 

nz(x ~ g) ~fn'z = z, fnz + n' (x' + h) = z'. (56.2) 

We consider a homocentric bundle emanating from the point x, y, z; let the point x', y, z 

be the point in which all the rays of the bundle intersect after passing through the lens. If the 

first and second pairs of equations (56.2) were independent, then these four equations, for 

given x, y, z, x', /, z\ would determine one definite set of values ny, nz, /;', n'z, that is, there 

would be just one ray starting from the point x, y, z, which would pass through the point x', 

/, z'. In order that all rays starting from x, y, z shall pass through x', /, z', it is consequently 

necessary that the equations (56.2) not be independent, that is, one pair of these equations 

must be a consequence of the other. The necessary condition for this dependence is that the 

t It can be shown that the problem of image formation with the aid of narrow bundles, moving in the 
neighbourhood of the optical axis in a nonaxially-symmetric system, can be reduced to image formation in 
an axially-symmetric system plus a subsequent rotation of the image thus obtained, relative to the object. 
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coefficients in the one pair of equations be proportional to the coefficients of the other pair. 
Thus we must have 

In particular. 

x~8 = f _ y _ z 
f x' + h y' z'* 

(x-g)(x' + h) = -f2. 

(56.3) 

(56.4) 

The equations we have obtained give the required connection between the coordinates of 

the image and object for image formation using narrow bundles. 

The points x = g and x' = - h on the optical axis are called the principal foci of the optical 

system. Let us consider bundles of rays parallel to the optical axis. The source point of such 

rays is, clearly, located at infinity on the optical axis, that is, x = From (56.3) we see that 

in this case, x' = - h. Thus a parallel bundle of rays, after passage through the optical system, 

intersects at the principal focus. Conversely, a bundle of rays emerging from the principal 

focus becomes parallel after passage through the system. 

In the equation (56.3) the coordinates x and x' are measured from the same origin of 

coordinates, lying on the optical axis. It is, however, more convenient to measure the 

coordinates of object and image from different origins, choosing them at the corresponding 

principal foci. As positive direction of the coordinates we choose the direction from the 

corresponding focus toward the side to which the light travels. Designating the new co¬ 

ordinates of object and image by capital letters, we have 

X = x-g, X' = x' + h, Y = y, Y’=y', Z = z, Z’ = z'. 

The equations of image formation (56.3) and (56.4) in the new coordinates take the form 

XX' = -f, (56.5) 

_ Zf_L-_x_ 
z X f 

The quantity /is called the principal focal length of the system. 

The ratio Y'/Y is called the lateral magnification. As for the longitudinal magnification, 

since the coordinates are not simply proportional to each other, it must be written in differential 

form, comparing the length of an element of the object (along the direction of the axis) with 

the length of the corresponding element in the image. From (56.5) we get for the “longitudinal 

magnification” 

dX' _f^_ 
dX x2 

(56.7) 

We see from this that even for an infinitely small object, it is impossible to obtain a 

geometrically similar image. The longitudinal magnification is never equal to the transverse 

(except in the trivial case of identical imaging). 

A bundle passing through the point X = / on the optical axis intersects once more at the 

point X' = ~f on the axis; these two points are called principal points. From equation (56.2) 

(n,,X - fn'y = Y, nzX -fn'z = Z) it is clear that in this case (X-f Y = Z = 0), we have the 

equations ny = n'y, nz = n'z. Thus every ray starting from a principal point crosses the 

optical axis again at the other principal point in a direction parallel to its original direction. 
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If the coordinates of object and image are measured from the principal points (and not 

from the principal foci), then for these coordinates t, and we have 

r=*'+/. $=*-/■ 
Substituting in (56.5) it is easy to obtain the equations of image formation in the form 

I__L 
4 

(56.8) 

One can show that for an optical system with small thickness (for example, a mirror or a 

thin lens), the two principal points almost coincide. In this case the equation (56.8) is 

particularly convenient, since in it t, and are then measured practically from one and the 

same point. 

If the focal distance is positive, then objects located in front of the focus (X > 0) are 

imaged erect (Y'/Y > 0); such optical systems are said to be converging. If/< 0, then for 

X > 0 we have Y'/Y < 0, that is, the object is imaged in inverted form; such systems are said 

to be diverging. 

There is one limiting case of image formation which is not contained in the formulas 

(56.8); this is the case where all three coefficients/, g, h are infinite (i.e. the optical system 

has an infinite focal distance and its principal foci are located at infinity). Going to the limit 

of infinite /, g, h in (56.4) we obtain 

Since we are interested only in the case where the object and its image are located at finite 

distances from the optical system, /, g, h must approach infinity in such fashion that the 

ratios h/g, (/2 - gh)/g are finite. Denoting them, respectively, by or2 and (3, we have 

x = cfix + p. 

For the other two coordinates we now have from the general equation (56.7): 

— - — = ±a. 

Finally, again measuring the coordinates x and x' from different origins, namely from some 

arbitrary point on the axis and from the image of this point, respectively, we finally obtain 

the equations of image formation in the simple form 

X' = c?X, r = ±aY, Z' = ±ctZ. (56.9) 

Thus the longitudinal and transverse magnifications are constants (but not equal to each 

other). This case of image formation is called telescopic. 

All the equations (56.5) through (56.9), derived by us for lenses, apply equally to mirrors, 

and even to an optical system without axial symmetry, if only the image formation occurs 

by means of narrow bundles of rays travelling near the optical axis. In this, the reference 

points for the x coordinates of object and image must always be chosen along the optical 

axis from corresponding points (principal foci or principal points) in the direction of propagation 

of the ray. In doing this, we must keep in mind that for an optical system not possessing axial 

symmetry, the directions of the optical axis in front of and beyond the system do not lie in 

the same plane. 
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PROBLEMS 

1. Find the focal distance for image formation with the aid of two axially-symmetric optical systems 
whose optical axes, coincide. 

Solution: Let /[ and f2 be the focal lengths of the two systems. For each system separately, we have 

XxX[ = -/i2, X2X’2=-tf. 

Since the image produced by the first system acts as the object for the second, then denoting by / the 
distance between the rear principal focus of the first system and the front focus of the second, we have 
X2 = Xf -/; expressing X2 in terms of X,, we obtain 

from which it is clear that the principal foci of the composite system are located at the points X, = 

~/2//, X2 = f2H and the focal length is 

, fxfi 
T~ l 

(to choose the sign of this expression, we must write the corresponding equation for the transverse magnification). 

3 
J_ * 2 

x 0 x 

Fig. 8. 

In case 1 = 0, the focal length / = °=, that is, the composite system gives telescopic image formation. In 
this case we have X2 = Xt (f2 lf\)2, that is, the parameter a in the general formula (56.9) is a =f2lfi- 

2. Find the focal length for charged particles of a “magnetic lens” in the form of a longitudinal homogeneous 
field in the section of length / (Fig. 8).t 

Solution: The kinetic energy of the particle is conserved during its motion in a magnetic field; therefore 
the Hamilton-Jacobi equation for the reduced action S0(r) (where the total action is S = -6, + ,S0) is 

(V5o_^A) =p2’ 

Using formula (19.4) for the vector potential of the homogeneous magnetic field, choosing the x axis along 
the field direction and considering this axis as the optical axis of an axially-symmetric optical system, we 
get the Hamilton-Jacobi equation in the form: 

t This might be the field inside a long solenoid, when we neglect the disturbance of the homogeneity of 
the field near the ends of the solenoid. 
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where r is the distance from the x axis, and S0 is a function of x and r. 

For narrow beams of particles propagating close to the optical axis, the coordinate r is small, so that 
accordingly we try to find S0 as a power series in r. The first two terms of this series are 

S0 =px+\o{x)r2, (2) 

where o(x) satisfies the equation 

pa'(x) + o2 =0. (3) 

In region 1 in front of the lens, we have: 

where x, < 0 is a constant. This solution corresponds to a free beam of particles, emerging along straight 
line rays from the point x = x, on the optical axis in region 1. In fact, the action function for the free motion 
of a particle with a momentum p in a direction out from the point x = x: is 

S0=p^2+(x-xi)2^p(x-x1) + 1(^-y 

Similarly, in region 2 behind the lens v. 

where the constant xr2 is the coordinate of the image of the point x,. 

In region 3 inside the lens, the solution of equation (3) is obtained by separation of variables, and gives: 

where C is an arbitrary constant. 

The constant C and x2 (for given *,) are determined by the requirements of continuity of <r(x) for x = 0 

eH 
t C, 

l-x2 ■ 

Eliminating the constant C from these equations, we find: 

C*i - g) (x2 + h) = -f2, 

wheret 

eH lep’ 

eHl' 
n2cp 

t The value of/is given with the correct sign. However, to show this requires additional investigation. 



§ 57 IMAGE FORMATION WITH BROAD BUNDLES OF RAYS 

§ 57. Image formation with broad bundles of rays 

153 

The formation of images with the aid of narrow bundles of rays, which was considered in 

the previous section, is approximate; it is the more exact (i.e. the sharper) the narrower the 

bundles. We now go over to the question of image formation with bundles of rays of 

arbitrary breadth. 

In contrast to the formation of an image of an object by narrow beams, which can be 

achieved for any optical system having axial symmetry, image formation with broad beams 

is possible only for specially constituted optical systems. Even with this limitation, as 

already pointed out in § 56, image formation is not possible for all points in space. 

The later derivations are based on the following essential remark. Suppose that all rays, 

starting from a certain point O and travelling through the optical system, intersect again at 

some other point O'. It is easy to see that the optical path length y/ is the same for all these 

rays. In the neighbourhood of each of the points O, O', the wave surfaces for the rays 

intersecting in them are spheres with centres at O and O', respectively, and, in the limit as 

we approach O and O', degenerate to these points. But the wave surfaces are the surfaces of 

constant phase, and therefore the change in phase along different rays, between their points 

of intersection with two given wave surfaces, is the same. From what has been said, it 

follows that the total change in phase between the points O and O' is the same (for the 

different rays). 

Let us consider the conditions which must be fulfilled in order to have formation of an 

image of a small line segment using broad beams; the image is then also a small line 

segment. We choose the directions of these segments as the directions of the £ and £,' axes, 

with origins at any two corresponding points O and O' of the object and image. Let y/be the 

optical path length for the rays starting from O and reaching O'. For the rays starting from 

a point infinitely near to O with coordinate d£, and arriving at a point of the image with 

coordinate d%', the optical path length is y/ + dy/, where 

We introduce the “magnification” 

as the ratio of the length d%' of the element of the image to the length dE, of the imaged 

element. Because of the smallness of the line segment which is being imaged, the quantity 

a can be considered constant along the line segment. Writing, as usual, dyf/d£ = -n%, dy/ld^' 

- n'^ (n^, are the cosines of the angles between the directions of the ray and the corresponding 

axes t, and <§'), we obtain 

dy/= (a^n's - )d£. 

As for every pair of corresponding points of object and image, the optical path length y/ + 

dy/ must be the same for all rays starting from the point and arriving at the point d£'. 

From this we obtain the condition; 

a= const. (57.1) 

This is the condition we have been seeking, which the paths of the rays in the optical system 
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must satisfy in order to have image formation for a small line segment using broad beams. 

The relation (57.1) must be fulfilled for all rays starting from the point O. 

Let us apply this condition to image formation by means of an axially-symmetric optical 

system. We start with the image of a line segment coinciding with the optical axis (x axis); 

clearly the image also coincides with the axis. A ray moving along the optical axis (nx =1), 

because of the axial symmetry of the system, does not change its direction after passing 

through it, that is, n'x is also 1. From this it follows that const in (57.1) is equal in this case 

to ax - 1, and we can rewrite (57.1) in the form 

Denoting by 0 and 0' the angles subtended by the rays with the optical axis at points of the 

object and image, we have 

1 - n, = 1 - cos 0=2 sin2 1 - n'x- 1 - cos 0' = 2 sin2 

Thus we obtain the condition for image formation in the form 

■ 0 
sin y 
--p- = const = Jax . (57.2) 

sinT 
Next, let us consider the imaging of a small portion of a plane perpendicular to the optical 

axis of an axially symmetric system; the image will obviously also be perpendicular to this 

axis. Applying (57.1) to an arbitrary segment lying in the plane which is to be imaged, we 

get: 

ar sin O' - sin 0 = const, 

where 0 and 0' are again the angles made by the beam with the optical axis. For rays 

emerging from the point of intersection of the object plane with the optical axis, and directed 

along this axis (0 = 0), we must have 0' = 0, because of symmetry. Therefore const is zero, 

and we obtain the condition for imaging in the form 

(57.3) 

As for the formation of an image of a three-dimensional object using broad beams, it is 

easy to see that this is impossible even for a small volume, since the conditions (57.2) and 

(57.3) are incompatible. 

§ 58. The limits of geometrical optics 

From the definition of a monochromatic plane wave, its amplitude is the same everywhere 

and at all times. Such a wave is infinite in extent in all directions in space, and exists over 

the whole range of time fromto+°°. Any wave whose amplitude is not constant everywhere 

at all times can only be more or less monochromatic. We now take up the question of the 

“degree of non-monochromaticity” of a wave. 

Let us consider an electromagnetic wave whose amplitude at each point is a function of 

the time. Let (Oq be some average frequency of the wave. Then the field of the wave, for 
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example the electric field, at a given point has the form E0 (t)e 1,01)1. This field, although it 

is of course not monochromatic, can be expanded in monochromatic waves, that is, in a 

Fourier integral. The amplitude of the component in the expansion, with frequency w, is 

proportional to the integral 

J E0(Oe^^'dt. 

The factor js a periodic function whose average value is zero. If E0 were exactly 

constant, then the integral would be exactly zero, for w (()(,. If, however, E0(r) is variable, 

but hardly changes over a time interval of order M\w- ct^l, then the integral is almost equal 

to zero, the more exactly the slower the variation of E0. In order for the integral to be 

significantly different from zero, it is necessary that E0(r) vary significantly over a time 

interval of the order of 1/1 w - tool. 

We denote by At the order of magnitude of the time interval during which the amplitude 

of the wave at a given point in space changes significantly. From these considerations, it 

now follows that the frequencies deviating most from too, which appear with reasonable 

intensity in the spectral resolution of this wave, are determined by the condition 1/1 to - tool 

~ At. If we denote by Ato the frequency interval (around the average frequency too) which 

enters in the spectral resolution of the wave, then we have the relation 

AwAt~l. (58.1) 

We see that a wave is the more monochromatic (i.e. the smaller Ato) the larger At, i.e. the 

slower the variation of the amplitude at a given point in space. 

Relations similar to (58.1) are easily derived for the wave vector. Let Ax, Ay, Az be the 

orders of magnitude of distances along the X, Y, Z axes, in which the wave amplitude 

changes significantly. At a given time, the field of the wave as a function of the coordinates 

has the form 

E0(r)c'k°r, 

where k0 is some average value of the wave vector. By a completely analogous derivation 

to that for (58.1) we can obtain the interval Ak of values contained in the expansion of the 

wave into a Fourier integral: 

AkxAx ~ 1, AkyAy ~ 1, MzAz~l. (58.2) 

Let us consider, in particular, a wave which is radiated during a finite time interval. We 

denote by At the order of magnitude of this interval. The amplitude at a given point in space 

changes significantly during the time At in the course of which the wave travels completely 

past the point. Because of the relations (58.1) we can now say that the “lack of 

monochromaticity” of such a wave, Aw, cannot be smaller than 1/Ar (it can of course be 

larger): 

Am>-J-. (58.3) 
At 

Similarly, if Ax, Ay, Az are the orders of magnitude of the extension of the wave in space, 

then for the spread in the values of components of the wave vector, entering in the resolution 

of the wave, we obtain 
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Akx> Aky>-~, Mz>4~- (58.4) 
Ax ’ y ~ Ay z Az 

From these formulas it follows that if we have a beam of light of finite width, then the 

direction of propagation of the light in such a beam cannot be strictly constant. Taking the 

X axis along the (average) direction of light in the beam, we obtain 

1 
“ kAy 

A 
Ay’ 

(58.5) 

where 6X is the order of magnitude of the deviation of the beam from its average direction 

in the X Y plane and A is the wavelength. 

On the other hand, the formula (58.5) answers the question of the limit of sharpness of 

optical image formation. A beam of light whose rays, according to geometrical optics, would 

all intersect in a point, actually gives an image not in the form of a point but in the form of 

a spot. For the width A of this spot, we obtain, according to (58.5), 

A 
k6 

A 
e ’ 

(58.6) 

where 6 is the opening angle of the beam. This formula can be applied not only to the image 

but also to the object. Namely, we can state that in observing a beam of light emerging from 

a luminous point, this point cannot be distinguished from a body of dimensions XI6. In this 

way formula (58.6) determines the limiting resolving power of a microscope. The minimum 

value of A, which is reached for 6 ~ 1, is A, in complete agreement with the fact that the limit 

of geometrical optics is determined by the wavelength of the light. 

PROBLEM 

Determine the order of magnitude of the smallest width of a light beam produced from a parallel beam 
at a distance / from a diaphragm. 

Solution: Denoting the size of the aperture in the diaphragm by d, we have from (58.5) for the angle of 
deflection of the beam (the “diffraction angle”), AId, so that the width of the beam is of order d + (A/d)l. The 

smallest value of this quantity ~ ffXl. 

§ 59. Diffraction 

The laws of geometrical optics are strictly correct only in the ideal case when the wavelength 

can be considered to be infinitely small. The more poorly this condition is fulfilled, the 

greater are the deviations from geometrical optics. Phenomenon which are the consequence 

of such deviations are called diffraction phenomena. 

Diffraction phenomena can be observed, for example, if along the path of propagation of 

the light! there is an obstacle—an opaque body (we call it a screen) of arbitrary form or, for 

example, if the light passes through holes in opaque screens. If the laws of geometrical 

optics were strictly satisfied, there would be beyond the screen regions of “shadow” sharply 

delineated from regions where light falls. The diffraction has the consequence that, instead 

of a sharp boundary between light and shadow, there is a quite complex distribution of the 

t In what follows, in discussing diffraction we shall talk of the diffraction of light; all these same 
considerations also apply, of course, to any electromagnetic wave. 
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intensity of the light. These diffraction phenomena appear the more strongly the smaller the 

dimensions of the screens and the apertures in them, or the greater the wavelength. 

The problems of the theory of diffraction consists in determining, for given positions and 

shapes of the objects (and locations of the light sources), the distribution of the light, that is, 

the electromagnetic field over all space. The exact solution of this problem is possible only 

through solution of the wave equation with suitable boundary conditions at the surface of 

the body, these conditions being determined also by the optical properties of the material. 

Such a solution usually presents great mathematical difficulties. 

However, there is an approximate method which for many cases is a satisfactory solution 

of the problem of the distribution of light near the boundary between light and shadow. This 

method is applicable to cases of small deviation from geometrical optics, i.e. when firstly, 

the dimensions of all bodies are large compared with the wavelength (this requirement 

applies both to the dimensions of screens and apertures and also to the distances from the 

bodies to the points of emission and observation of the light); and secondly when there are 

only small deviations of the light from the directions of the rays given by geometrical optics. 

Let us consider a screen with an aperture through which the light passes from given 

sources. Figure 9 shows the screen in profile (the heavy line); the light travels from left to 

right. We denote by u some one of the components of E or H. Here we shall understand u 

to mean a function only of the coordinates, i.e. without the factor e determining the time 

dependence. Our problem is to determine the light intensity, that is, the field u, at any point 

of observation P beyond the screen. For an approximate solution of this problem m cases 

where the deviations from geometrical optics are small, we may assume that at the points of 

the aperture the field is the same as it would have been in the absence of the screen. In other 

words, the values of the field here are those which follow directly from geometrical optics. 

At all points immediately behind the screen, the field can be set equal to zero. In this the 

properties of the screen (i.e. of the screen material) obviously play no part. It is also obvious 

that in the cases we are considering, what is important for the diffraction is only the shape 

of the edge of the aperture, while the shape of the opaque screen is unimportant. 

Fig. 9. 

We introduce some surface which covers the aperture in the screen and is bounded by its 

edges (a profile of such a surface is shown in Fig. 9 as a dashed line). We break up this 

surface into sections with area df, whose dimensions are small compared with the size of the 

aperture, but large compared with the wavelength of the light. We can then consider each of 

these sections through which the light passes as if it were itself a source of light waves 

spreading out on all sides from this section. We shall consider the field at the point P to be 

the result of superposition of the fields produced by all the sections df of the surface 

covering the aperture. (This is called Huygens' principle.) 
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The field produced at the point P by the section df is obviously proportional to the value 

u of the field at the section df itself (we recall that the field at df is assumed to be the same 

as it would have been in the absence of the screen). In addition, it is proportional to the 

projection df, of the area df on the plane perpendicular to the direction n of the ray coming 

from the light source to df This follows from the fact that no matter what shape the element 

df has, the same rays will pass through it provided its projection df„ remain fixed and 
therefore its effect on the field at P will be the same. 

Thus the field produced at the point P by the section df is proportional to u dfn. Furthermore 

we must still take into account the change in the amplitude and phase of the wave during its 

propagation from df to P. The law of this change is determined by formula (54.3) Therefore 

u dfn must be multiplied by (\IR)e,kR (where R is the distance from d/to P, and k is the 

absolute value of the wave vector of the light), and we find that the required field is 

where a is an as yet unknown constant. The field at the point P, being the result of the 

addition of the fields produced by all the elements df, is consequently equal to 

where the integral extends over the surface bounded by the edge of the aperture. In the 

approximation we are considering, this integral cannot, of course, depend on the form of this 

surface. Formula (59.1) is, obviously, applicable not only to diffraction by an aperture in a 

screen, but also to diffraction by a screen around which the light passes freely. In that case 

the surface of integration in (59.1) extends on all sides from the edge of the screen. 

To determine the constant a, we consider a plane wave propagating along the X axis; the 

wave surfaces are parallel to the plane YZ. Let u be the value of the field in the YZ plane 

Then at the point P, which we choose on the X axis, the field is equal to up = ueikx. On the 

other hand, the field at the point P can be determined starting from formula (59.1), choosing 

as surface of integration, for example, the YZ plane. In doing this, because of the smallness 

of the angle of diffraction, only those points of the YZ plane are important in the integral 

which he close to the origin, i.e. the points for which y,z«x (x is the coordinate of the 
point P). Then 

and (59.1) gives 

ikx r j -Z. r 
UP = au I e 2x dy I e 2x dz, 

where u is a constant (the field in the YZ plane); in the factor MR, we can put R = * = const. 

By the substitution y = ^2x/k these two integrals can be transformed to the integral 
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and we get 

DIFFRACTION 159 

2in 
u„ - aue —7—. 

p k 

On the other hand, up = ueikx, and consequently 

Substituting in (59.1), we obtain the solution to our problem in the form 

(59'2> 

In deriving formula (59.2), the light source was assumed to be essentially a point, and the 

light was assumed to be strictly monochromatic. The case of a real, extended source, which 

emits non-monochromatic light, does not, however, require special treatment. Because of 

the complete independence (incoherence) of the light emitted by different points of the 

source, and the incoherence of the different spectral components of the emitted light, the 

total diffraction pattern is simply the sum of the intensity distributions obtained from the 

diffraction of the independent components of the light. 

Let us apply formula (59.2) to the solution of the problem of the change in phase of a ray 

on passing through its point of tangency to the caustic (see the end of § 54). We choose as 

our surface of integration in (59.2) any wave surface, and determine the field up at a point 

P, lying on some given ray at a distance x from its point of intersection with the wave surface 

we have chosen (we choose this point as coordinate origin O, and as YZ plane the plane 

tangent to the wave surface at the point O). In the integration of (59.2) only a small area of 

the wave surface in the neighbourhood of O is important. If the XY and XZ planes are chosen 

to coincide with the principal planes of curvature of the wave surface at the point O, then 

near this point the equation of the surface is 

2RX 2R2 ’ 

where Rx and R2 are the radii of curvature. The distance R from the point on the wave surface 

with coordinates X, y, z, to the point P with coordinates x, 0, 0, is 

R = v/(*-*)2 +/+z2 ** + ~ 7^) + t[x ~ ‘ 

On the wave surface, the field u can be considered constant; the same applies to the factor 

MR. Since we are interested only in changes in the place of the wave, we drop coefficients 

and write simply 

(59.3) 

The centres of curvature of the wave surface lie on the ray we are considering, at the 

points x = R\ and x = R2, these are the points where the ray is tangent to the caustic. Suppose 

R2<RX. For x < R2, the coefficients of i in the exponentials appearing in the two integrands 
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are positive, and each of these integrals is proportional to (1 + i). Therefore on the part of 

the ray before its first tangency to the caustic, we have up ~ elkx. For R2 < x < Ru that is, on 

the segment of the ray between its two points of tangency, the integral over y is proportional 

to 1 + i, but the integral over z is proportional to 1 - i, so that their product does not contain 

i. Thus we have here up —ielkx = et(kx~(7tf2)), that is, as the ray passes in the neighbourhood 

of the first caustic, its phase undergoes an additional change of -n/2. Finally, for x > Rx, we 

have up ~ - e,kx - e,(kx~n\ that is, on passing in the neighbourhood of the second caustic, the 

phase once more changes by - n/2. 

PROBLEM 

Determine the distribution of the light intensity in the neighbourhood of the point where the ray is tangent 
to the caustic. 

Solution: To solve the problem, we use formula (59.2), taking the integral in it over any wave surface 
which is sufficiently far from the point of tangency of the ray to the caustic. In Fig. 10, ab is a section of 
this wave surface, and a'b' is a section of the caustic; a'b' is the evolute of the curve ab. We are interested 
in the intensity distribution in the neighbourhood of the point O where the ray QO is tangent to the caustic; 
we assume the length D of the segment QO of the ray to be large. We denote by a the distance from the point 
O along the normal to the caustic, and assume positive values a for points on the normal in the direction of 
the centre of curvature. 

The integrand in (59.2) is a function of the distance R from the arbitrary point Q' on the wave surface to 
the point P. From a well-known property of the evolute, the sum of the length of the segment Q'O' of the 
tangent at the point O' and the length of the arc Off is equal to the length QO of the tangent at the point 
O. For points O and ff which are near to each other we have Off = 6q (Q is the radius of curvature of the 
caustic at the point O). Therefore the length Q’O’ = D - GQ. The distance Q'O (along a straight line) is 
approximately (the angle 6 is assumed to be small) 

Q’O = Q'O' + Q sin 6 = D - 6q + Q sin 6 = D - Q 

Finally, the distance R = Q'P is equal to R = Q’O -a sin 6= Q'O - x 6, that is, 

R = D-xe-±Q63. 

Substituting this expression in (59.2), we obtain 
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(the slowly varying factor 1 ID in the integrand is unimportant compared with the exponential factor, s 
assume it constant). Introducing the new integration variable E, = (kg/2)1/3 6, we get 

where 0(1) is the Airy function.! 
For the intensity I~ I up I2, we writ 

(concerning the choice of the constant factor, cf, below). 
For large positive values of x, we have from this the asymptotic formula 

that is, the intensity drops exponentially (shadow region). For large negative values of x, we have 

1 2(-x)312 2 k2 n\ 
3 ip 4 ’ 

that is, the intensity oscillates rapidly; its average value over these oscillations is 

From this meaning of the constant A is clear—it is the intensity far from the caustic which would be 
obtained from geometrical optics neglecting diffraction effects. 

t The Airy function 0(1) is defined a 

(see Quantum Mechanics, Mathematical Appendices, § b). For large positive values of the argument, the 

asymptotic expression for 0(1) is 

that is, 0(1) goes exponentially to zero. For large negative values of t, the function O(t) oscillates with 

decreasing amplitude according to the law: 

The Airy function is related to the MacDonald function (modified Hankel function) of order 1/3: 

0(1) = *Jt/3n Kin(jt312). 

Formula (2) corresponds to the asymptotic expansion of Kv(t): 
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The function 0(0 attains its largest value, 0.949, for t = -1.02; correspondingly, the maximum intensity 
is reached at x(lk2/g)'13 = - 1.02, where 

I = 2.03 Akmg~m. 

At the point where the ray is tangent to the caustic (x = 0), we have / = 0.89 Akln p l/6 [since 0(0) = 0.629], 
Thus near the caustic the intensity is proportional to ku\ that is, to Al/3 (A is the wavelength). For 

A ^ 0, the intensity goes to infinity, as it should (see § 54). 

§ 60. Fresnel diffraction 

If the light source and the point P at which we determine the intensity of the light are 

located at finite distances from the screen, then in determining the intensity at the point P, 

only those points are important which lie in a small region of the wave surface over which 

we integrate in (59.2)—the region which lies near the line joining the source and the point 

P. In fact, since the deviations from geometrical optics are small, the intensity of the light 

arriving at P from various points of the wave surface decreases very rapidly as we move 

away from this line. Diffraction phenomena in which only a small portion of the wave 

surface plays a role are called Fresnel diffraction phenomena. 

Let us consider the Fresnel diffraction by a screen. From what we have just said, for a 

given point P only a small region at the edge of the screen is important for this diffraction. 

But over sufficiently small regions, the edge of the screen can always be considered to be 

a straight line. We shall therefore, from now on, understand the edge of the screen to mean 
just such a small straight line segment. 

We choose as the XY plane a plane passing through the light source Q (Fig. 11) and 

through the line of the edge of the screen. Perpendicular to this, we choose the plane XZ so 

that it passes through the point Q and the point of observation P, at which we try to 

determine the light intensity. Finally, we choose the origin of coordinates O on the line of 

the edge of the screen, after which the positions of all three axes are completely determined. 

Let the distance from the light source Q to the origin be Dq. We denote the x-coordinate 

of the point of observation P by Dp, and its z-coordinate, i.e. its distance from the XY plane, 

by d. According to geometrical optics, the light should pass only through points lying above 

the AT plane, the region below the XY plane is the region which according to geometrical 
optics should be in shadow (region of geometrical shadow). 

We now determine the distribution of light intensity on the screen near the edge of the 

geometrical shadow, i.e. for values of d small compared with Dp and Dq. A negative d means 
that the point P is located within the geometrical shadow. 

As the surface of integration in (59.2) we choose the half-plane passing through the line 

of the edge of the screen and perpendicular to the AT plane. The coordinates x and y of points 



FRESNEL DIFFRACTION 163 § 60 

on this surface are related by the equation x = y tan a (a is the angle between the line of the 

edge of the screen and the Y axis), and the z-coordinate is positive. The field of the wave 

produced by the source Q, at the distance Rq from it, is proportional to the factor e q . 

Therefore the field u on the surface of integration is proportional to 

u ~ exp{ik^jy2 + z2 + (Dq + y tan a)2}. 

In the integral (59.2) we must now substitute for R, 

R = y2 + (z - d)2 + (Dp - y tan a)2. 

The slowly varying factors in the integrand are unimportant compared with the exponential. 

Therefore we may consider \IR constant, and write dy dz in place of dfn. We then find that 

the field at the point P is 

up ~ f f exp {ik^j(Dq + y tan a)2 + y2 + z2 

+ ^[(Dp - y tan a)2 +(z-d)2 +y2)}dydz. (60.1) 

As we have already said, the light passing through the point P comes mainly from points 

of the plane of integration which are in the neighbourhood of O. Therefore in the integral 

(60.1) only values of y and z which are small (compared with Dq and Dp) are important. For 

this reason we can write 

■yj(Dq + y tan a)2 + y2 + z2 - Dq + y 2^~ + >'tan 

■J(Dp - y tan a)2 +(z- d)2 + y2 * Dp + (Z ~ ^ —— - y tan a. 

We substitute this in (60.1). Since we are interested only in the field as a function of the 

distance d, the constant factor exp [ik(Dp + Dq)} can be omitted; the integral over y also 

gives an expression not containing d, so we omit it also. We then find 

“P ~ J «p{»( z2 + 2u;(z ~df )}*• 

This expression can also be written in the form 

The light intensity is determined by the square of the field, that is, by the square modulus 

lnpl2. Therefore, when calculating the intensity, the factor standing in front of the integral is 
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irrelevant, since when multiplied by the complex conjugate expression it gives unity. An 
obvious substitution reduces the integral to 

where 

(60.3) 

w = 

Thus, the intensity I at the point P is : 

2Dp(Dq+Dpy 

'4 #]/"'> 4{(c<-2>+t)2 + (s<-2»4)2}- (60.5) 

c(z) = '/!' J cos 1)2 d11' = ■M' J sin 
o ’ o 

are called the Fresnel integrals. Formula (60.5) solves our problem of determining the light 

intensity as a function of d. The quantity 70 is the intensity in the illuminated region at points 

not too near the edge of the shadow; more precisely, at those points with w » 1 (C(°°) = 
S(°°) = j- in the limit w —» °o). 

The region of geometrical shadow corresponds to negative w. It is easy to find the asymptotic 

form of the function I(w) for large negative values of w. To do this we proceed as follows. 
Integrating by parts, we have 

Integrating by parts once more on the right side of the equation and repeating this process, 
we obtain an expansion in powers of 1/lwl: 

| = -...]. (60.6) 

Although an infinite series of this type does not converge, nevertheless, because the sucessive 

terms decrease very rapidly for large values of Iwl, the first term already gives a good 

representation of the function on the left for sufficiently large Iwl (such a series is said to be 

asymptotic). Thus, for the intensity /(w), (60.5), we obtain the following asymptotic formula, 
valid for large negative values of w: 
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We see that in the region of geometric shadow, far from its edge, the intensity goes to zero 

as the inverse square of the distance from the edge of the shadow. 

We now consider positive values of w, that is, the region above the XY plane. We write 

j e*2 dr] = J e'"2 dr] - J dr] = (1 + 0-jf ~ J ^ <*!■ 

For sufficiently large w, we can use an asymptotic representation for the integral standing on 

the right side of the equation, and we have 

Substituting this expression in (60.5), we obtain 

/ = /o 1 + 

(60.8) 

(60.9) 

Thus in the illuminated region, far from the edge of the shadow, the intensity has an infinite 

sequence of maxima and minima, so that the ratio ///0 oscillates on both sides of unity. With 

increasing w, the amplitude of these oscillations decreases inversely with the distance from 

the edge of the geometric shadow, and the positions of the maxima and minima steadily 

approach one another. 
For small w, the function I(w) has qualitatively this same character (Fig. 12). In the region 

of the geometric shadow, the intensity decreases monotonically as we move away from the 

boundary of the shadow. (On the boundary itself, ///0 = i-) For positive w, the intensity has 

alternating maxima and minima. At the first (largest) maximum, I/Iq = 1.37. 

§ 61. Fraunhofer diffraction 

Of special interest for physical applications are those diffraction phenomena which occur 

when a plane parallel bundle of rays is incident on a screen. As a result of the diffraction, 

the beam ceases to be parallel, and there is light propagation along directions other than the 

initial one. Let us consider the problem of determining the distribution over direction of the 

intensity of the diffracted light at large distances beyond the screen (this formulation of the 

problem corresponds to Fraunhofer diffraction). Here we shall again restrict ourselves to 
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the case of small deviations from geometrical optics, i.e. we shall assume that the angles of 

deviation of the rays from the initial direction (the diffraction angles) are small. 

This problem can be solved by starting from the general formula (59.2) and passing to the 

limit where the light source and the point of observation are at infinite distances from the 

screen. A characteristic feature of the case we are considering is that, in the integral which 

determines the intensity of the diffracted light, the whole wave surface over which the 

integral is taken is important (in contrast to the case of Fresnel diffraction, where only the 

portions of the wave surface near the edge of the screens are important).f 

However, it is simpler to treat this problem anew, without recourse to the general formula 

(59.2). 

Let us denote by u0 the field which would exist beyond the screens if geometrical optics 

were rigorously valid. This field is a plane wave, but its cross-section has certain regions 

(corresponding to the “shadows” of opaque screens) in which the field is zero. We denote by 

S the part of the plane cross-section on which the field un is different from zero; since each 

such plane is a wave surface of the plane wave. u() = const over the whole surface S. 

Actually, however, a wave with a limited cross-sectional area cannot be strictly plane (see 

§ 58). In its spatial Fourier expansion there appear components with wave vectors having 

different directions, and this is precisely the origin of the diffraction. 

Let us expand the field into a two-dimensional Fourier integral with respect to the 

coordinates y, z in the plane of the transverse cross-section of the wave. For the Fourier 

components, we have: 

«q = ff M0e“'q rdy dz, (61.1) 

where the vectors q are constant vectors in the y, z plane; the integration actually extends 

only over that portion S of the y, z plane on which u() is different from zero. If k is the wave 

vector of the incident wave, the field component uqe'q r gives the wave vector k' = k + q. 

Thus the vector q = k' - k determines the change in the wave vector of the light in the 

diffraction. Since the absolute values k - k' - (ole, the small diffraction angles 6y, 0T in the 

xy- and xz-planes are related to the components of the vector q by the equations 

(61.2) 

For small deviations from geometrical optics, the components in the expansion of the field 

u() can be assumed to be identical with the components of the actual field of the diffracted 

light, so that formula (61.1) solves our problem. 

t The criteria for Fresnel and Fraunhofer diffraction are easily found by returning to formula (60.2) and 
applying it, for example, to a slit of width a ( instead of to the edge of an isolated screen). The integration 
over z in (60.2) should then be taken between the limits from 0 to a. Fresnel diffraction corresponds to the 
case when the term containing -2 in the exponent of the integrand is important, and the upper limit of the 
integral can be replaced by «*>. For this to be the case, we must have 

On the other hand, if this inequality is reversed, the term in z2 can be dropped; this corresponds to the case 
of Fraunhofer diffraction. 



FRAUNHOFER DIFFRACTION 167 § 61 

The intensity distribution of the diffracted light is given by the square \uq\2 as a function 

of the vector q. The quantitative connection with the intensity of the incident light is 

established by the formula 

j*j* uqdydz = JJ l«q 
dqydqz 

(61.3) 

[compare (49.8)]. From this we see that the relative intensity diffracted into the solid angle 

do - ddy dOz is given by 

I mJi dqydq- = f (Q V 2 (j0 

" ul (2n)2 V2nc J Mo 
(61.4) 

Let us consider the Fraunhofer diffraction from two screens which are “complementary”: 

the first screen has holes where the second is opaque and conversely. We denote by u(l> and 

i/2’ the field of the light diffracted by these screens (when the same light is incident in both 

cases). Since uq(1) and uq(2) are expressed by integrals (61.1) taken over the surfaces of the 

apertures in the screens, and since the apertures in the two screens complement one another 

to give the whole plane, the sum wq(1) + wq<2) is the Fourier component of the field obtained 

in the absence of the screens, i.e. it is simply the incident light. But the incident light is a 

rigorously plane wave with definite direction of propagation, so that uq(1) + wq(2) = 0 for all 

nonzero values of q. Thus we have wq(1) = - uq(2), or for the corresponding intensities, 

lwq(1)l2 = lwq(2)l2 for q * 0. (61.5) 

This means that complementary screens give the same distribution of intensity of the 

diffracted light (this is called Babinet’s principle). 
We call attention here to one interesting consequence of the Babinet principle. Let us 

consider a black body, i.e. one which absorbs completely all the light falling on it. According 

to geometrical optics, when such a body is illuminated, there is produced behind it a region 

of geometrical shadow, whose cross-sectional area is equal to the area of the body in the 

direction perpendicular to the direction of incidence of the light. However, the presence of 

diffraction causes the light passing by the body to be partially deflected from its initial 

direction. As a result, at large distances behind the body there will not be complete shadow 

but, in addition to the light propagating in the original direction, there will also be a certain 

amount of light propagating at small angles to the original direction. It is easy to determine 

the intensity of this scattered light. To do this, we point out that according to Babinet’s 

principle, the amount of light deviated because of diffraction by the body under consideration 

is equal to the amount of light which would be deviated by diffraction from an aperture cut 

in an opaque screen, the shape and size of the aperture being the same as that of the 

transverse section of the body. But in Fraunhofer diffraction from an aperture all the light 

passing through the aperture is deflected. From this it follows that the total amount of light 

scattered by a black body is equal to the amount of light falling on its surface and absorbed 

by it. 

PROBLEMS 

1. Calculate the Fraunhofer diffraction of a plane wave normally incident on an infinite slit (of width 2a) 

with parallel sides cut in an opaque screen. 
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Solution: We choose the plane of the slit as the yz plane, with the z axis along the slit (Fig. 13 shows a 
section of the screen). For normally incident light, the plane of the slit is one of the wave surfaces, and we 
choose it as the surface of integration in (61.1). Since the slit is infinitely long, the light is deflected only 
in the xy plane [since the integral (61.1)] becomes zero for qz *■ 0}. 

Therefore the field should be expanded only in the y coordinate: 

f 2 u0 . 
“«=“oJ« qydy = — sm W- 

The intensity of the diffracted light in the angular range d6 is 

dq I0 sin2ka6 Jn 

2n ~ nak 61 

where k = talc, and I0 is the total intensity of the light incident on the slit. 

dlldG as a function of diffraction angle has the form shown in Fig. 14. As 6 increases toward either side 
from 0=0, the intensity goes through a series of maxima with rapidly decreasing height. The successive 
maxima are separated by minima at the points 6=nn/ka (where n is an integer); at the minima, the intensity 
falls to zero. 

Fig. 14. 
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2 Calculate the Fraunhofer diffraction by a diffraction grating—a plane screen in which are cut a series 
of identical parallel slits (the width of the slits is 2a, the width of opaque screen between neighbouring slits 

is 2b, and the number of slits is N). 

Solution: We choose the plane of the grating as the yz plane, with the z axis parallel to the slits. 

Diffraction occurs only in the xy plane, and integration of (61.1) gives: 

N-\ , .-2iNqd 
.. _ ./ T e-2inqd ' - 
"« " U“ h e “1 - e-** 

single slit. Using the results of problem 1, where d = a + b, and u’q is the result of the integration 

we get: 

dl = 
'sinNqd^sin qa}2 u _ h fsin NkGd^ sm2ka6 

dq - Nnak\ sin k6d ) 62 

(/„ is the total intensity of the light passing through all the slits). c _ 
For the case of a large number of slits (N -> -), this formula can be written in another form. For values 

q = m/d, where n is an integer, dl/dq has a maximum; near such a maximum (i.e. for qd = nn+ e, with £ 

small) 

(sin qa\2 sin2Ne 
di = i0a\—M >r rdq- 

l qa ) nNe2 

But for N we have the formulaf 

sin2 Me 

nNx2 
= S(x). 

We therefore have, in the neighbourhood of each maximum: 

di = J a(f^tqa\ s^d£ 

dy qa J 

i.e., in the limit the widths of the maxima are infinitely narrow and the total light intensity in the n th 

maximum is 

j^_Iv d sinHnnald) 

3. Find the distribution of intensity over direction for the diffraction of light which is incident normal to 

the plane of a circular aperture of radius a. 

Solution ■ We introduce cylindrical coordinates z, r, * with the z axis passing through the centre of the 
aperture and perpendicular to its plane. It is obvious that tije diffraction is symmetric about the z ax.s 
that the vector q has only a radial component qr=q = k6. Measuring the angle (j) from the direction q, and 

integrating in (61.1) over the plane of the aperture, we find: 

t For a * 0 the function on the left side of the equation is zero, while according to a well-known formula 

of the theory of Fourier series. 

Urn -Ir J fix) - ■dx =/(0). 

From this we see that the properties of this function actually coincide with those of the 5-function (see the 

footnote on p. 74). 



THE PROPAGATION OF LIGHT 

uq = u0 J j" e ‘«'cost> rd<j)dr = 2nuu J* J0(qr)rdr, 

where Jv is the zero’th order Bessel function. Using the well-known formula 

J Jt)(qr)rdr = (aq), 

we then have 

uq=2n^Jx(aq), 

and according to (61.4) we obtain for the intensity of the light diffracted into the element of solid angle do: 

dl = I0 
J*(akO) 

tc62 
■do. 

where I0 is the total intensity of the light incident on the aperture. 



CHAPTER 8 

THE FIELD OF MOVING CHARGES 

§ 62. The retarded potentials 

In Chapter 5 we studied the constant field, produced by charges at rest, and in Chapter 6, 

the variable field in the absence of charges. Now we take up the study of varying fields in 

the presence of arbitrarily moving charges. 

We derive equations determining the potentials for arbitrarily moving charges. This derivation 

is most conveniently done in four-dimensional form, repeating the derivation at the end of 

§ 46, with the one change that we use the second pair of Maxwell equations in the form 

(30.2) 

dFik 4n 

dxk c J • 

The same right-hand side also appears in (46.8), and after imposing the Lorentz condition 

dA' 

dx‘ 
0, — ^ + div A = 0, 

c dt 

on the potentials, we get 

d2Ai _ 4jr ., 

t)xk,lxk <• J ‘ 

This is the equation which determines the potentials of an arbitrary elecuoinag 

In three-dimensional form it is written as two equations, for A and for 0: 

AA —y = 
c2 dt2 

(62.1) 

(62.2) 

l- Held. 

(62.3) 

„ t 1 d2<j) 
(62.4) 

For constant fields, these reduce to the already familiar equations (36.4) and (43.4), and for 

variable fields without charges, to the homogeneous wave equation. 

As we know, the solution of the inhomogeneous linear equations (62.3) and (62.4) can be 

represented as the sum of the solution of these equations without the right-hand side, and a 

particular integral of these equations with the right-hand side. To find the particular solution, 

we divide the whole space into infinitely small regions and determine the field produced by 

171 
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the charges located in one of these volume elements. Because of the linearity of the field 

equations, the actual field will be the sum of the fields produced by all such elements. 

The charge de in a given volume element is, generally speaking, a function of the time. If 

we choose the origin of coordinates in the volume element under consideration, then the 

charge density is Q = de(t) <5(R), where R is the distance from the origin. Thus we must 

solve the equation 

A * - 4- 4-r = - 4 7Ide(t) S( R). (62.5) 
c2 dr 

Everywhere, except at the origin, 0(R) = 0, and we have the equation 

A*-^0 = 0. (62.6) 

It is clear that in the case we are considering 0 has central symmetry, i.e. 0 is a function only 

of R. Therefore if we write the Laplace operator in spherical coordinates, (62.6) reduces to 

To solve this equation, we make the substitution 0 = %(R, t)/R. Then, we find for X 

1 d2X n 

dR2 c2 dt2 

But this is the equation of plane waves, whose solution has the form (see § 47): 

Since we only want a particular solution of the equation, it is sufficient to choose only one 

of the functions/, and f2. Usually it turns out to be convenient to take/2 = 0 (concerning this, 

see below). Then, everywhere except at the origin, 0 has the form 

(62.7) 

So far the function x is arbitrary; we now choose it so that we also obtain the correct value 

for the potential at the origin. In other words, we must select x so that at the origin equation 

(62.5) is satisfied. This is easily done noting that as R -» 0, the potential increases to infinity, 

and therefore its derivatives with respect to the coordinates increase more rapidly than its 

time derivative. Consequently as R —> 0, we can, in equation (62.5), neglect the term (1/c2)/ 

(d2(j)ldt2) compared with A0. Then (62.5) goes over into the familiar equation (36.9) leading 

to the Coulomb law. Thus, near the origin, (62.7) must go over into the Coulomb law, from 

which it follows that x(t) = de(t), that is. 
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From this it is easy to get to the solution of equation (62.4) for an arbitrary distribution of 

charges Q(x, y, z, t). To do this, it is sufficient to write de = QdV (dV is the volume element) 

and integrate over the whole space. To this solution of the inhomogeneous equation (62.4) 

we can still add the solution 0O of the same equation without the right-hand side. Thus, the 

general solution has the form: 

<Kr, t) = J e (r', t - * j dV' + to, (62.8) 

R = r - r', dV = dx' dy' dz' 

where 

r = (x, y, z), r' = (*', /, z'); 

R is the distance from the volume element dV to the “field point” at which we determine the 

potential. We shall write this expression briefly as 

0= J ^p-dV+<!>0, (62.9) 

where the subscript means that the quantity Q is to be taken at the time t - (R/c), and the 

prime on dV has been omitted. 

Similarly we have for the vector potential: 

A = c J ^fldv+Ao, (62-10) 

where A0 is the solution of equation (62.3) without the right-hand term. 

The potentials (62.9) and (62.10) (without 0O and Ao) are called the retarded potentials. 

In case the charges are at rest (i.e. density p independent of the time), formula (62.9) goes 

over into the well-known formula (36.8) for the electrostatic field; for the case of stationary 

motion of the charges, formula (62.10), after averaging, goes over into formula (43.5) for 

the vector potential of a constant magnetic field. 

The quantities A0 and (j)0 in (62.9) and (62.10) are to be determined so that the conditions 

of the problem are fulfilled. To do this it is clearly sufficient to impose initial conditions, that 

is, to fix the values of the field at the initial time. However we do not usually have to deal 

with such initial conditions. Instead we are usually given conditions at large distances form 

the system of charges throughout all of time. Thus, we may be told that radiation is incident 

on the system from outside. Corresponding to this, the field which is developed as a result 

of the interaction of this radiation with the system can differ from the external field only by 

the radiation originating from the system. This radiation emitted by the system must, at large 

distances, have the form of waves spreading out from the system, that is, in the direction of 

increasing R. But precisely this condition is satisfied by the retarded potentials. Thus these 

solutions represent the field produced by the system, while 0O and A0 must be set equal to 

the external field acting on the system. 

§ 63. The Lienard-Wiechert potentials 

Let us determine the potentials for the field produced by a charge carrying out an assigned 

motion along a trajectory r = r0(r). 
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According to the formulas for the retarded potentials, the field at the point of observation 

P(x, y, z) at time t is determined by the state of motion of the charge at the earlier time t\ 

for which the time of propagation of the light signal from the point r0(f')> where the charge 

was located, to the field point P just coincides with the difference t - t'. Let R(f) = r - r0(/) 

be the radius vector from the charge e to the point P; like r0(r) it is a given function of the 

time. Then the time t' is determined by the equation 

R(t') _ 
(63.1) 

For each value of t this equation has just one root t'.f 

In the system of reference in which the particle is at rest at time t', the potential at the 

point of observation at time t is just the Coulomb potential. 

' R{t') ’ 
(63.2) 

The expressions for the potentials in an arbitrary reference system can be found directly 

by finding a four-vector which for v = 0 coincides with the expressions just given for 0 and 

A. Noting that, according to (63.1), 0 in (63.2) can also be written in the form 

we find that the required four-vector is: 

A‘ = e 
ul 

Rkuk’ 
(63.3) 

where uk is the four-velocity of the charge, Rk = [c(t-t'), r - r'], where x', y, z', t' are related 

by the equation (63.1), which in four-dimensional form is 

RkRk = 0. ' (63.4) 

Now once more transforming to three-dimensional notation, we obtain, for the potentials of 

the field produced by an arbitrarily moving point charge, the following expressions: 

(63.5) 

where R is the radius vector, taken from the point where the charge is located to the point 

of observation P, and all the quantities on the right sides of the equations must be evaluated 

at the time t', determined from (63.1). The potentials of the field, in the form (63.5), are 

called the Lienard-Wiechert potentials. 

t This point is obvious but it can be verified directly. To do this we choose the field point P and the time 
of observation t as the origin O of the four-dimensional coordinate system and construct the light cone 
(§ 2) with its vertex at O. The lower half of the cone, containing the absolute past (with respect to the event 
O), is the geometrical locus of world points such that signals sent from them reach O. The points in which 
this hypersurface intersects the world line of the charge are precisely the roots of (63.1). But since the 
velocity of a particle is always less than the velocity of light, the inclination of its world line relative to the 
time axis is everywhere less than the slope of the light cone. It then follows that the world line of the particle 
can intersect the lower half of the light cone in only one point. 
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To calculate the intensities of the electric and magnetic fields from the formulas 
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I pi A 
E = - — - grad 0, H = curl A, 

we must differentiate 0 and A with respect to the coordinates x, y, z of the point, and the time 

t of observation. But the formulas (63.5) express the potentials as functions of t', and only 

through the relation (63.1) as implicit functions of x, y, z, t. Therefore to calculate the 

required derivatives we must first calculate the derivatives of t'. Differentiating the relation 

R(t') = c(t - t') with respect to t, we get 

dR _ dR dt' _ R • v dt' _ ( dt' \ 

~dt ~ W ~di ~ ~ R~ ~dt~C{ ~dT)' 

(The value of dR/dt' is obtained by differentiating the identity R2 = R2 and substituting 

dR(t')/dt' - - \(t'). The minus sign is present because R is the radius vector from the charge 

e to the point P, and not the reverse.) 

Thus, 

dt’ 1 
dt i v • R 

Rc 

(63.6) 

Similarly differentiating the same relation with respect to the coordinates, we find 

grad t'=-^ grad R(t') = - i grad t’ + ^ j. 

so that 

(63.7) 

With the aid of these formulas, there is no difficulty in carrying out the calculation of the 

fields E and H. Omitting the intermediate calculations, we give the final results: 

R--/? xv , (63.8) 

H = |rxE. (63.9) 

Here, v = d\/dtall quantities on the right sides of the equations refer to the time t'. It is 

interesting to note that the magnetic field turns out to be everywhere perpendicular to the 

electric. 

The electric field (63.8) consists of two parts of different type. The first term depends only 

on the velocity of the particle (and not on its acceleration) and varies at large distances like 

1/R2. The second term depends on the acceleration, and for large R it varies like l/R. Later 
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(§ 66) we shall see that this latter term is related to the electromagnetic waves radiated by 

the particle. 

As for the first term, since it is independent of the acceleration it must correspond to the 

field produced by a uniformly moving charge. In fact, for constant velocity the difference 

R(- ~^R,' = R»' 

is the distance Rf from the charge to the point of observation at precisely the moment of 

observation. It is also easy to show directly that 

R, - I R, v = ^R? - -L (V x R,)2 = R, J1 -^-sin20„ 

where 6, is the angle between R, and v. Consequently the first term in (63.8) is identical with 

the expression (38.8). 

PROBLEM 

Derive the Lienard-Wiechert potentials by integrating (62.9)-(62.10). 

Solution: We write formula (62.8) in the form: 

0(r, t)= JJ S^r-t + ^ lr - r'lj drdV' 

(and similarly for A(r, /)), introducing the additional delta function and thus eliminating the implicit 
arguments in the function Q. For a point charge, moving in a trajectory r = r0(t); we have: 

e(r', r) = e<5[r' - r0(r)]. 

Substituting this expression and integrating over dV', we get: 

The T integration is done using the formula 

[where t is the root of F(t') = 0], and gives formula (63.5). 

§ 64. Spectral resolution of the retarded potentials 

The field produced by moving charges can be expanded into monochromatic waves. The 

potentials of the different monochromatic components of the field have the form 

A6)«""a. The charge and current densities of the system of charges producing the field can 

also be expanded in a Fourier series or integral. It is clear that each Fourier component of 

Q and j is responsible for the creation of the corresponding monochromatic component of 

the field. 

In order to express the Fourier components of the field in terms of the Fourier components 

of the charge density and current, we substitute in (62.9) for 0 and Q respectively, ^ae~ict*, 

and We then obtain 
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go> g i—dv- 

Factoring and introducing the absolute value of the wave vector k = (ole, we have: 

fc=J e.^dV. (64.1) 

Similarly, for Aa we get 

<642> 

We note that formula (64.1) represents a generalization of the solution of the Poisson 

equation to a more general equation of the form 

A0(0 + k2^ = - 4nQm (64.3) 

(obtained from equations (62.4) for Q, <p depending on the time through the factor 

If we were dealing with expansion into a Fourier integral, then the Fourier components of 

the charge density would be 

Qm= J Qeit0,dt. 

Substituting this expression in (64.1), we get 

4 = JJ ^ ei<tot+kR) dVdt. (64.4) 

We must still go over from the continuous distribution of charge density to the point charges 

whose motion we are actually considering. Thus, if there is just one point charge, we set 

Q = e5[r - r0(OL 

where r0(t) is the radius vector of the charge, and is a given function of the time. Substituting 

this expression in (64.4) and carrying out the space integration [which reduces to replacing 

r by r0(t)], we get: 

(64.5) 

where now R(t) is the distance from the moving particle to the point of observation. Similarly 

we find for the vector potential: 

where v = r0(r) is the velocity of the particle. 
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Formulas analogous to (64.5), (64.6) can also be written for the case where the spectral 

resolution of the charge and current densities contains a discrete series of frequencies. Thus, 

for a periodic motion of a point charge (with period T = 2nlo\^ the spectral resolution of the 

field contains only frequencies of the form nco,0, and the corresponding components of the 

vector potential are 

T 

A„ = ^J W)einC°°l,+R(,Vc]dt (64.7) 

o 

(and similarly for 0„). In both (64.6) and (64.7) the Fourier components are defined in 

accordance with § 49. 

PROBLEM 

Find the expansion in plane waves of the field of a charge in uniform rectilinear motion. 

Solution: We proceed in similar fashion to that used in § 51. We write the charge density in the form 
Q = eSir - vr), where v is the velocity of the particle. Taking Fourier components of the equation <j> = 
- 4nc Sir - V7), we find ( 0)k = - 4ne c 'lv kl'. 

On the other hand, from 

-J d*k 

(2 n)3 

we have 

Thus, 

from which, finally 

(Fl0k =-k2<l>k^T^-. 

JL + k2<pk = 4me-iik v)', 

= Aik 

From this it follows that the wave with wave vector k has the frequency (0 = k • v. Similarly, we obtain 
for the vector potential. 

Finally, we have for the fields. 

k+(k;\ 
e i(kv)» 
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§ 65. The Lagrangian to terms of second order 

In ordinary classical mechanics, we can describe a system of particles interacting with 

each other with the aid of a Lagrangian which depends only on the coordinates and velocities 

of these particles (at one and the same time). The possibility of doing this is, in the last 

analysis, dependent on the fact that in mechanics the velocity of propagation of interactions 

is assumed to be infinite. 

We already know that because of the finite velocity of propagation, the field must be 

considered as an independent system with its own “degrees of freedom”. From this it 

follows that if we have a system of interacting particles (charges), then to describe it we 

must consider the system consisting of these particles and the field. Therefore, when we take 

into account the finite velocity of propagation of interactions, it is impossible to describe the 

system of interacting particles rigorously with the aid of a Lagrangian, depending only on 

the coordinates and velocities of the particles and containing no quantities related to the 

internal “degrees of freedom” of the field. 

However, if the velocity vof all the particles is small compared with the velocity of light, 

then the system can be described by a certain approximate Lagrangian. It turns out to be 

possible to introduce a Lagrangian describing the system, not only when all powers of vie 

are neglected (classical Lagrangian), but also to terms of second order, v^/c2. This last 

remark is related to the fact that the radiation of electromagnetic waves by moving charges 

(and consequently, the appearance of a “self’-field) occurs only in the third approximation 

in vie (see later, in § 67).t 

As a preliminary, we note that in zero’th approximation, that is, when we completely 

neglect the retardation of the potentials, the Lagrangian for a system of charges has the form 

L'°)=l|/n0v2-I^ (65.1) 
a 2 a>b Kab 

(the summation extends over the charges which make up the system). The second term is the 

potential energy of interaction as it would be for charges at rest. 

To get the next approximation, we proceed in the following fashion. The Lagrangian for 

a charge ea in an external field is 

Choosing any one of the charges of the system, we determine the potentials of the field 

produced by all the other charges at the position of the first, and express them in terms of 

the coordinates and velocities of the charges which produce this field (this can be done only 

approximately—for 0, to terms of order v^lc2, and for A, to terms in vie). Substituting the 

expressions for the potentials obtained in this way in (65.2), we get the Lagrangian for one 

t For systems consisting of particles with the same chaige-to-mass ratio, the appearance of radiation is 
put off to the fifth approximation in vie, in such a case there is a Lagrangian to terms of fourth order in 
vie. [See B.M. Barker and R.F. O’Connel, Can. J. Phys. 58, 1659 (1980).] 
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of the charges of the system (for a given motion of the other charges). From this, one can 

then easily find the Lagrangian for the whole system. 

We start from the expressions for the retarded potentials 

a f Qt-R/c ... i if «h R/c , *=J A = cj -ird 

If the velocities of all the charges are small compared with the velocity of light, then the 

charge distribution does not change significantly during the time R/c. Therefore we can 

expand pt-R/c and j,_R/c in series of powers of R/c. For the scalar potential we thus find, to 

terms of second order: 

0=1 tMIJ Redv 
(Q without indices is the value of Q at time t; the time differentiations can clearly be taken 

out from under the integral sign). But J QdV is the constant total charge of the system. 

Therefore the second term in our expression is zero, so that 

Redv <653) 
We can proceed similarly with A. But the expression for the vector potential in terms of 

the current density already contains 1/c, and when substituted in the Lagrangian is multiplied 

once more by 1/c. Since we are looking for a Lagrangian which is correct only to terms of 

second order, we can limit ourselves to the first term in the expansion of A, that is, 

A=c J %dV (654) 
(we have substituted j = Qv). 

Let us first assume that there is only a single point charge e. Then we obtain from (65.3) 

and (65.4), 

e d2R 

2c2 dt2 ’ 
A 

e\ 
(65.5) 

where R is the distance from the charge. 

We choose in place of 0 and A other potentials (j)' and A', making the transformation (see 

§ 18): 

A' = A + grad/, 

in which we choose for / the function 

f- JL — 
J ~ 2c dt ' 

Then we getf 

t These potentials no longer satisfy the Lorentz condition (62.1), nor the equations (62.3)-(62.4). 
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r= ± A' - — + — V 
R’ cR 2c dt' 

To calculate A' we note first of all that V(dR/dt) = (d/dt)VR. The grad operator here means 

differentiation with respect to the coordinates of the field point at which we seek the value 

of A'. Therefore VR is the unit vector n directed from the charge e to the field point, so that 

We also write: 

A _ A. ( *1 _ R _ M 
dt(Rj R r2- 

But the derivative -R for a given field point is the velocity v of the charge, and the 

derivative R is easily determined by differentiating R2 = R2, that is, by writing 

RR = R • R = - R • v. 

Thus, 

- v + n(n • v) 
n =--- 

Substituting this in the expression for A', we get finally: 

. , e[v + (v • n)n] 

A =-2cR- 
(65.6) 

If there are several charges then we must, clearly, sum these expressions over all the charges. 

Substituting these expressions in (65.2), we obtain the Lagrangian La for the charge ea (for 

a fixed motion of the other charges). In doing this we must also expand the first term in 

(65.2) in powers of vjc, retaining terms up to the second order. Thus we find: 

La 
ma i mya 

2 + 8 c2 
£ 

b 

eb 

Rab 
£' [\a ■ \b + (vfl • na6)(vfc • nob)] 

(the summation goes over all the charges except ea; nab is the unit vector from eb to ea). 

From this, it is no longer difficult to get the Lagrangian for the whole system. It is easy 

to convince oneself that this function is not the sum of the La for all the charges, but has the 

form 

- [va • vb + (va ■ na6)(vfc • nflfc)]. 

(65.7) 

Actually, for each of the charges under a given motion of all the others, this function L goes 

over into La as given above. The expression (65.7) determines the Lagrangian of a system 

of charges correctly to terms of second order. (It was first obtained by C. G. Darwin, 1922.) 

Finally we find the Hamiltonian of a system of charges in this same approximation. This 

could be done by the general rule for calculating ^ from L; however it is simpler to proceed 

as follows. The second and fourth terms in (65.7) are small corrections to L(0)(65.1). On the 
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other hand, we know from mechanics that for small changes of L and the additions to 

them are equal in magnitude and opposite in sign (here the variations of L are considered for 

constant coordinates and velocities, while the changes in i# refer to constant coordinates and 

momenta).! 

Therefore we can at once write §£, subtracting from 

the second and fourth terms of (65.7), replacing the velocities in them by the first approximation 

\a = pJma- Thus, 

r=£- --E Pa 
i a 8c2ml a>b 

- £ 
a>b 2c" 

i£b_ 
[Pa ‘ Pfc + (Pa ‘ nafc)(Pfc ' nafc)l- (65.8) 

PROBLEMS 

1. Determine (correctly to terms of second order) the centre of inertia of a system of interacting particles. 

Solution: The problem is solved most simply by using the formula 

I,dara+IWrdV 
R = ^--- 

I.#a+IWdV 

[see (14.6)], where Sa is the kinetic energy of the particle (including its rest energy), and W is the energy 
density of the field produced by the particles. Since the contain the large quantities mac2, it is sufficient, 
in obtaining the next approximation, to consider only those terms in 4 and W which do not contain c, i.e. 
we need consider only the nonrelativistic kinetic energy of the particles and the energy of the electrostatic 
field. We then have: 

J WrdV-it;j £2rdv 

-sfJ fVv)2rdv 

-£/(■"■^ 

the integral over the infinitely distant surface vanishes; the second integral also is transformed into a surface 
integral and vanishes, while we substitute Acp = - 4nQ in the third integral and obtain: 

J WrdV=^J p<prdV= j leatpara> 

t See Mechanics, § 40. 
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where (pa is the potential produced at the point ra by all the charges other than ea.f 
Finally, we get: 

(with a summation over all b except b = a), where 

is the total energy of the system. Thus in this approximation the coordinates of the centre of inertia can 
actually be expressed in terms of quantities referring only to the particles. 

2. Write the Hamiltonian in second approximation for a system of two particles, omitting the motion of 
the system as a whole. 

Solution: We choose a system of reference in which the total momentum of the two particles is zero. 
Expressing the momenta as derivatives of the action, we have 

Pi + p2 = dS/d r! + dS/d r2 = 0. 

From this it is clear that in the reference system chosen the action is a function of r = r2 - r,, the difference 
of the radius vectors of the two particles. Therefore we have p2 = - Pi = P, where p = dS/dr is the 
momentum of the relative motion of the particles. The Hamiltonian is 

t The elimination of the self-field of the particles corresponds to the mass “renormalization” mentioned 

in the footnote on p. 97). 


